Math, asked by mrayushmaangup, 9 months ago

the sum of 3 numbers in ap is 18 and their product is 192 .find the numbers​

Answers

Answered by avk6418peh6wh
4

Answer:

The numbers are 4,6,8

Step-by-step explanation:

Let the numbers be a-d,a,a+d

Sum of numbers=3a=18

a=6

Product of numbers=a(a+d)(a-d)

=a(a^2-d^2)=192

6(36-d^2)=192

36-d^2=32

d^2=4

d=2

The numbers are a-d,a a+d

The numbers are 4,6,8

Answered by chanchalmehra09
1

Answer:

\begin{lgathered}Required\:three \: number\\are \:(4,6,8)\:Or\:(8,6,4)\end{lgathered}

Requiredthreenumber

are(4,6,8)Or(8,6,4)

Step-by-step explanation:

\begin{lgathered}Let \: (a-d),a,(a+d)\:are \\three \: consecutive\: terms\\of \:A.P\end{lgathered}

Let(a−d),a,(a+d)are

threeconsecutiveterms

ofA.P

According to the problem given,

sum \:of \: numbers=18sumofnumbers=18

\implies a-d+a+a+d=18⟹a−d+a+a+d=18

\implies 3a=18⟹3a=18

\implies a = \frac{18}{3}=6⟹a=

3

18

=6

Product\:of \: numbers=192Productofnumbers=192

\implies (a-d)a(a+d)=192⟹(a−d)a(a+d)=192

\implies (a^{2}-d^{2}a=192⟹(a

2

−d

2

a=192

\implies (6^{2}-d^{2})\times 6=192⟹(6

2

−d

2

)×6=192

\implies 36-d^{2}=\frac{192}{6}⟹36−d

2

=

6

192

\implies 36-d^{2}=32⟹36−d

2

=32

\implies -d^{2}=32-36⟹−d

2

=32−36

\implies -d^{2}=-4⟹−d

2

=−4

\implies d^{2}=4⟹d

2

=4

\implies d = ±\sqrt{2^{2}}⟹d=±

2

2

\implies d = ± 2⟹d=±2

\begin{lgathered}Case\: 1 \\If \:a = 6,\:d=2\end{lgathered}

Case1

Ifa=6,d=2

\begin{lgathered}The\: numbers\:are ,\\(a-d),a,(a+d)\\(6-2),6,(6+2)\\4,6,8\end{lgathered}

Thenumbersare,

(a−d),a,(a+d)

(6−2),6,(6+2)

4,6,8

\begin{lgathered}Case \:2 \\If \:a=6,\:d=-2\\Three

Similar questions