Math, asked by alefiyahashfi, 1 month ago

the sum of 3 terms of gp is 7 and that of 6 terms is 63. find gp​

Answers

Answered by mathdude500
6

\large\underline{\sf{Solution-}}

Let assume that,

↝ First term of GP series, is a

and

↝ Common ratio of GP series, is r.

Now,

↝ Wᴇ ᴋɴᴏᴡ ᴛʜᴀᴛ,

↝ Sum of n  terms of an geometric sequence is,

\begin{gathered}\red\bigstar\:\:{\underline{\orange{\boxed{\bf{\green{S_n\:=\dfrac{a( {r}^{n} - 1) }{r - 1} \:  \: provided \: that \: r \:  \ne \: 1 }}}}}} \\ \end{gathered}

Wʜᴇʀᴇ,

Sₙ is the sum of n terms of GP.

a is the first term of the sequence.

n is the no. of terms.

r is the common ratio.

Now,

Given that,

↝ Sum of first three terms of GP = 7

\red{\rm :\longmapsto\:S_3 = 7}

\bf :\longmapsto\:\dfrac{a( {r}^{3} - 1) }{r - 1} = 7 -  -  - (1)

Also, given that,

↝ Sum of first 6 terms = 63

\red{\rm :\longmapsto\:S_6 = 63}

\bf :\longmapsto\:\dfrac{a( {r}^{6} - 1) }{r - 1} = 63 -  -  - (2)

Now, Divide equation (2) by (1), we get

\bf :\longmapsto\:\dfrac{( {r}^{6} - 1) }{ {r}^{3}  - 1} = 9

can be rewritten as

\bf :\longmapsto\:\dfrac{(( {r}^{3}) {}^{2}  - 1) }{ {r}^{3}  - 1} = 9

\bf :\longmapsto\:\dfrac{( {r}^{3}  - 1)( {r}^{3}   + 1)}{ {r}^{3}  - 1} = 9

\rm :\longmapsto\: {r}^{3} + 1 = 9

\rm :\longmapsto\: {r}^{3}  = 9 - 1

\rm :\longmapsto\: {r}^{3}  = 8

\rm :\longmapsto\: {r}^{3}  =  {2}^{3}

\bf\implies \:r = 2

On Substituting r = 2, in equation (1) we get

\bf :\longmapsto\:\dfrac{a( {2}^{3} - 1) }{2 - 1} = 7

\bf :\longmapsto\:\dfrac{a( {2}^{3} - 1) }{2 - 1} = 7

\bf :\longmapsto\:\dfrac{a( 8 - 1) }{1} = 7

\bf\implies \:a = 1

So, Required GP series is

  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \purple{\boxed{ \bf{ \: 1, \: 2, \: 4, \: 8, \: 16, \:  -  -  -  - }}}

Answered by Anonymous
8

Step-by-step explanation:

Let the first term og gp series is a

and common ratio of gp series, is r

Now, we know that :-

 \bold{ \: S_n =  \frac{a( {r}^{n}  - 1)}{r - 1} }

According to the question :-

The Sum of 3 terms of gp = 7

 \rightarrow \: S_3 = 7

 \therefore \:  \:  \bold{   \frac{a( {r}^{3}  - 1)}{r - 1} }  = 7 -  -  - (i)

and sum of first 6 terms of gp = 63

 \rightarrow \: S_6 = 63

 \therefore \:  \:  \bold{   \frac{a( {r}^{6}  - 1)}{r - 1} }  = 63 -  -  - (ii)

Now, Divide equation (ii) by (i), we get

 \frac{a( {r}^{n} - 1) }{r - 1}  \div \frac{a( {r}^{n} - 1) }{r - 1} = 63 \div 7

 \frac{ \cancel{a}( {r}^{6} - 1) }{ \cancel{r - 1}}   \times  \frac{ \cancel{r - 1} }{ \cancel{a}( {r}^{3} - 1)} =  \cancel{63}  \times  \frac{1}{ \cancel7}

 \frac{ ({r}^{6} - 1 )}{ ({r}^{3} - 1 )}  = 9

 \frac{ (({r}^{3})^{2}  - 1) }{ ({r}^{3}  - 1)}  = 9

 \frac{( {r}^{3} + 1)  \cancel{( {r}^{3}  - 1)}}{ \cancel{( {r}^{3}  - 1)}}  = 9

 {r}^{3}  + 1 = 9

 {r}^{3}   = 9 -  1

{r}^{3}   = 8

{r}^{3}   =  {(2})^{3}

r = 2

On Substituting r = 2, in equation (i), we get

{   \frac{a( {2}^{3}  - 1)}{2- 1} }  = 7

{   \frac{a( 8 - 1)}{1} }  = 7

{ 7a}  = 7

a =  \frac{ \cancel7}{ \cancel7}

a = 1

Similar questions