Math, asked by prathmesh8433, 1 year ago

The sum of 3rd and 11th terms of an arithmetic progression is 34 .find the sum of 13 term of the series

Answers

Answered by raju35652
1

Step-by-step explanation:

follow the above steps

Attachments:
Answered by Anonymous
2

\Large{\textbf{\underline{\underline{According\:to\:the\:Question}}}}

Given,

\tt{\rightarrow T_{3}+T_{11}=34}}

As we know that :-

\tt{\rightarrow T_{n}=a+(n-1)d}

a + 2d + a + 10d = 34

2a + 2d + 10d = 34

2a + 12d = 34

{\boxed{\sf\:{Taking\;common\;we\;get :-}}}

2(a + 6d) = 34

\tt{\rightarrow (a+6d)=\dfrac{34}{2}}

a + 6d = 17

Hence,

a = 17 - 6d ...... (1)

Now,

\tt{\rightarrow S_{n}=\dfrac{n}{2}[2a+(n-1)d]}

\tt{\rightarrow S_{13}=\dfrac{13}{2}[2(17-6d)+(13-1)d]}

\tt{\rightarrow S_{13}=6.5(34-12d+12d)}

\tt{\rightarrow S_{13}=6.5\times 34}

= 221

Hence,

\Large{\boxed{\sf\:{Sum\;of\;1st\;13\;terms= 221}}}

Similar questions