Math, asked by prathmesh8433, 10 months ago

The sum of 3rd and 11th terms of an arithmetic progression is 34 .find the sum of 13 term of the series

Answers

Answered by raju35652
1

Step-by-step explanation:

follow the above steps

Attachments:
Answered by Anonymous
2

\Large{\textbf{\underline{\underline{According\:to\:the\:Question}}}}

Given,

\tt{\rightarrow T_{3}+T_{11}=34}}

As we know that :-

\tt{\rightarrow T_{n}=a+(n-1)d}

a + 2d + a + 10d = 34

2a + 2d + 10d = 34

2a + 12d = 34

{\boxed{\sf\:{Taking\;common\;we\;get :-}}}

2(a + 6d) = 34

\tt{\rightarrow (a+6d)=\dfrac{34}{2}}

a + 6d = 17

Hence,

a = 17 - 6d ...... (1)

Now,

\tt{\rightarrow S_{n}=\dfrac{n}{2}[2a+(n-1)d]}

\tt{\rightarrow S_{13}=\dfrac{13}{2}[2(17-6d)+(13-1)d]}

\tt{\rightarrow S_{13}=6.5(34-12d+12d)}

\tt{\rightarrow S_{13}=6.5\times 34}

= 221

Hence,

\Large{\boxed{\sf\:{Sum\;of\;1st\;13\;terms= 221}}}

Similar questions