Math, asked by prathameshkutre387, 5 months ago

) The sum of 4 consecutive terms of an AP
is 32 and the ratra of the pirniduct of the
first and last term to the product of
the middle term is 7:15 find the
numbers.​

Answers

Answered by mathdude500
2

Given Question:-

  • The sum of 4 consecutive terms of an AP is 32 and the ratio of the product of the first and last term to the product ofthe middle term is 7:15. Find the numbers.

─━─━─━─━─━─━─━─━─━─━─━─━─

\tt \: \huge \orange{AηsωeR} ✍

─━─━─━─━─━─━─━─━─━─━─━─━─

\begin{gathered}\begin{gathered}\bf Given -  \begin{cases} &\tt{4 \:  numbers \:  are  \: in  \: AP} \\ &\tt{Sum \:  of \:  4 \:  numbers  \: is  \: 32} \\ \\ & \tt{\dfrac{Product  \: of  \: extremes}{Product  \: of \:  means}  = \dfrac{7}{15} }\\  \end{cases}\end{gathered}\end{gathered}

─━─━─━─━─━─━─━─━─━─━─━─━─

\begin{gathered}\begin{gathered}\bf  To \:  Find :-  \begin{cases} &\tt{4 \: numbers \:}  \end{cases}\end{gathered}\end{gathered}

─━─━─━─━─━─━─━─━─━─━─━─━─

\large\underline{\bold{Solution :-  }}

─━─━─━─━─━─━─━─━─━─━─━─━─

\tt \: Since \:  4  \: numbers \:  are \:  in \:  AP

\begin{gathered}\begin{gathered}\bf Let \: the \: numbers \: be -  \begin{cases} &\sf{x - 3y} \\ &\sf{x - y}\\ &\sf{x + y}\\ &\sf{x + 3y} \end{cases}\end{gathered}\end{gathered}

\begin{gathered}\bf\red{1. \: According \: to \: statement}\end{gathered}

\tt \:  Sum  \: of  \: 4  \: numbers \:  is \:  32

\tt \:  \implies \: x -  \cancel{3y} + x - \cancel y + x + \cancel y + x + \cancel{3y} = 32

\tt \:  \implies \: 4x = 32

\tt \:  \implies \: x = \dfrac{32}{4}

\tt \:  \implies \: x \:  =  \: 8

─━─━─━─━─━─━─━─━─━─━─━─━─

\begin{gathered}\tt\red{2. \: According \: to \: statement \: }\end{gathered}

\tt \: \tt{\dfrac{Product  \: of  \: extremes}{Product  \: of \:  means}  = \dfrac{7}{15} }

\tt \:  \implies \: \dfrac{(x - 3y)(x + 3y)}{(x - y)(x + y)}  = \dfrac{7}{15}

\tt \:  \implies \: \dfrac{ {x}^{2}  -  {9y}^{2} }{ {x}^{2}  -  {y}^{2} }  = \dfrac{7}{15}

\tt \:  \implies \:  {15x}^{2}  -  {135y}^{2} = 7 {x}^{2}   -  {7y}^{2}

\tt \:  \implies \:  {8x}^{2}  = 128 {y}^{2}

\tt \:  \implies \:  {x}^{2}  =  {16y}^{2}

☆ On substituting x = 8, we get

\tt \:  \implies \:  {16y}^{2}  =  {8}^{2}

\tt \:  \implies \:  {16y}^{2}  = 64

\tt \:  \implies \:  {y}^{2}  = 4

\tt \:  \implies \: y \:  =  \pm \: 2

─━─━─━─━─━─━─━─━─━─━─━─━─

Now, two cases arises.

Case :- 1.

\tt \: When  \: x \:  =  \: 8 \:  and  \: y \:  =  \: 2

\begin{gathered}\begin{gathered}\bf \: 4 \: numbers \: are -  \begin{cases} &\sf{x - 3y = 8 - 6 = 2} \\ &\sf{x - y} = 8 - 2 = 6\\ &\sf{x + y} = 8 + 2 = 10\\ &\sf{x + 3y} = 8 + 6 = 14 \end{cases}\end{gathered}\end{gathered}

─━─━─━─━─━─━─━─━─━─━─━─━─

☆ Case :- 2.

\tt \: When \:  x  \: =  \: 8  \: and  \: y \:  =  \:  -  \: 2

\begin{gathered}\begin{gathered}\bf \: 4 \: numbers \: are -  \begin{cases} &\sf{x - 3y = 8  +  6 = 14} \\ &\sf{x - y} = 8  +  2 = 10\\ &\sf{x + y} = 8  -  2 = 6\\ &\sf{x + 3y} = 8  -  6 = 2 \end{cases}\end{gathered}\end{gathered}

─━─━─━─━─━─━─━─━─━─━─━─━─

Similar questions