Math, asked by vijay2805, 11 months ago

The sum of 4 even consecutive positive integers of an AP is 68. The ratio of the product of first and last term to the product of two middle terms is 35:36. Find the numbers?​

Answers

Answered by sanketj
1

let a - 3d, a - d, a + d, a + 3d be the 4 terms in A.P.

a - 3d +  a - d + a + d + a + 3d = 68 \\ 4a = 68 \\ a = 17 \\  {a}^{2}  = 289 \:  \:    \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \: ... \: (i) \\  \\ now \\  \frac{(a - 3d)(a + 3d)}{(a - d)(a + d)}  =  \frac{35}{36}  \\   \frac{ {a}^{2} - 9 {d}^{2}  }{ {a}^{2}  -  {d}^{2} }  =  \frac{35}{36}  \\ 36 {a}^{2}  - 324 {d}^{2}  = 35 {a}^{2}  - 35 {d}^{2}  \\ 36 {a}^{2}  - 35 {a}^{2}  = 324 {d}^{2}  - 35 {d}^{2}  \\  {a}^{2}  = 289 {d}^{2}  \\ 289 = 289 {d}^{2}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   ...(from \: i) \\  {d}^{2}  = 1 \\ d = 1

Hence, the terms are

a - 3d = 17 - 3(1) = 17 - 3 = 14

a - d = 17 - 1 = 16

a + d = 17 + 1 = 18

a + 3d = 17 + 3(1) = 17 + 3 = 20

Hence, the terms of the given A.P. are 14, 16, 18 and 20.

Similar questions
Math, 11 months ago