Math, asked by rahulsharma09062005, 11 months ago

the sum of 4th and 6th term of an ap is 75 and the sum of 5th and 10th terms of an ap is 265 find the AP​

Answers

Answered by Anonymous
5

\bf{\Huge{\boxed{\bf{\green{ANSWER\::}}}}}

\bf{\Large{\underline{\tt{Given\::}}}}}

The sum of 4th & 6th term of an A.P. is 75 & the sum of 5th & 10th term of an A.P. is 265.

\bf{\Large{\underline{\tt{To\:\:find\::}}}}

The A.P.

\bf{\Large{\underline{\sf{\red{Explanation\::}}}}}

We know that formula of the terms:

\leadsto\tt{\orange{an=a+(n-1)d}}

A/Q

\longmapsto\tt{a4\:+\:a6\:=\:75}

\longmapsto\tt{a+(4-1)d+a+(6-1)d=75}

\longmapsto\tt{a+3d+a+5d\:=\:75}

\longmapsto\tt{2a+8d\:=\:75.....................(1)}

&

\longmapsto\tt{a5\:+\:a10\:=\:265}

\longmapsto\tt{a+(5-1)d+a+(10-1)d\:=\:265}

\longmapsto\tt{a+4d+a+9d=265}

\longmapsto\tt{2a+13d\:=\:265.........................(2)}

Subtracting equation (1) from equation (2), we get;

\longmapsto\tt{2a+13d-(2a+8d)=265-75}

\longmapsto\tt{\cancel{2a}+13d\cancel{-2a}-8d=265-75}

\longmapsto\tt{5d\:=\:190}

\longmapsto\tt{d\:=\:\cancel{\frac{190}{5} }}

\longmapsto\tt{\orange{d\:=\:38}}

Putting the value of d in equation (1), we get;

\longmapsto\tt{2a+8(38)=75}

\longmapsto\tt{2a+304\:=\:75}

\longmapsto\tt{2a\:=\:75\:-\:304}

\longmapsto\tt{2a\:=\:-229}

\longmapsto\tt{\orange{a\:=\:-\frac{229}{2} }}

Thus,

The Arithmetic Progression is -229/2,-153/2 , -77/2.............

Similar questions