Math, asked by mina1417, 1 month ago

the sum of 4th and 8th terms of an ap Is 24 and the sum of it's 6th and 10th terms is 44 find the sum of first three terms of the ap




hey guys I am back
plz answer this question

Answers

Answered by harshpratap7376
1

Here,

a  

4

=a+3d

a  

8

=a+7d

 

Therefore,

a+3d+a+7d=24

2a+10d=24

a+5d=12     …… (1)

 

Again,

a  

6

=a+5d

a  

10

=a+9d

 

Therefore,

a+5d+a+9d=44

2a+14d=44

a+7d=22    ……. (2)

 

Solving equations (1) and (2), we get

d=5 and a=−13

 

Therefore,

a  

1

=a=−13

a  

2

=a+d=−13+5=−8

a  

3

=a+2d=−13+10=−3

 

Hence, this is the required result.Step-by-step explanation:

Answered by ajay8949
0

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf{\binom{a}{ \:  \:  \: 4} +  \binom{a}{ \:  \:  \: 8}   = 24} - i

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf {\binom{a}{ \:  \:  \:6 }  +  \binom{a}{ \:  \:  \: 10}  = 44} - ii

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \blue{ f rom \: equation \: (i)}

 \:  \:  \:  \:  \: \:  \:  \:   \:  \:  \sf {a + 3d + a + 7d = 24}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf{2a + 10d = 24}

  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \sf{ \cancel{2}(a + 5d) = \cancel{ 24}}

\:  \  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf \green{a + 5d = 12 \:  -  -   iii}

  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \blue{from \: equation \:( ii)}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf{a + 5d + a + 9d = 44}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \sf{2a + 14d = 44}

  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \sf {\cancel{2}(a + 7d) =  \cancel{44}}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf \green{a + 7d = 22 \: -  -  iv}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \red{eq {}^{n} iv - eq {}^{n} iii}

 \:  \:  \sf{(a + 7d) - (a + 5d) = 22 - 12}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf{a + 7d - a - 5d = 10}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf{2d = 10}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \bold{ \pink{ \boxed{d  = 5}}}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf{ a + 7d = 22}

 \:  \:  \:  \: \:  \:   \:  \:  \:  \:  \:  \sf{a + 7(5) = 22}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf{a = 22 - 35}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \bold{ \pink{ \boxed{a =  - 13}}}

  hence sum \: of\: first \: three \: terms \: are

  \sf{  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: a +  \: a + d  + \: a + 2d}

  \:  \:  \:  \: - 13  - 13 + (5) - 13 + 2(5)

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  - 39 + 5 + 10

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  - 39 + 15

  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \green{ - 24}

Similar questions