Math, asked by oparaafreetshya, 1 year ago

the sum of 4th and 8th terms of an AP is 24 and the sum of 6th and 10th terms is 44. find the first 3 terms of the AP.

Answers

Answered by dakshayahuja02
44
Let the first term of an A.P.=a

and the common difference of the given A.P.=d

As we know that,

a n = a + (n − 1) d

a 4 = a + (4 − 1) d

a 4 = a + 3d

Similarly,

a 8 = a + 7d

a 6 = a + 5d

a 10 = a + 9d

Sum of 4th and 8th term =  24  (Given)

a 4 + a 8 = 24

a + 3d + a + 7d = 24

2a + 10d = 24

a + 5d = 12.................... (i)

 

Sum of 6th and 10th term = 44  (Given)

a 6 + a 10 = 44

a + 5d + a + 9d = 44

2a + 14d = 44

a + 7d = 22 ......................(ii)

 

Solving (i) and (ii), we get,



From equation (i), we get,

a + 5d = 12

a + 5 (5) = 12

a + 25 = 12

a = −13

 

a 2 = a + d = − 13 + 5 = −8

 

a 3 = a 2 + d = − 8 + 5 = −3

 

∴The first three terms of this A.P. are −13, −8, and −3.

 

Answered by SmartyVivek
7
Solution :-

Given :-

The sum of 4th and 8th terms of an AP is 24.
the sum of 6th and 10th terms is 44

To find first 3 terms of the AP.


First term of an A.P = a

common difference of the given A.P= d

we know that,

tn = a + (n − 1) d

a 4 = a + (4 − 1) d

a 4 = a + 3d

again

a 8 = a + 7d

a 6 = a + 5d

a 10 = a + 9d

Sum of 4th and 8th term =  24  (Given)

A/q

a 4 + a 8 = 24

a + 3d + a + 7d = 24

2a + 10d = 24

a + 5d = 12.................... (i)

 

Sum of 6th and 10th term = 44  (Given)

A/q

a 6 + a 10 = 44

a + 5d + a + 9d = 44

2a + 14d = 44

a + 7d = 22 ......................(ii)


On Solving (i) and (ii), we get

From equation (i), we get,

a + 5d = 12

a + 5 (5) = 12

a + 25 = 12

a = −13 ✔

a 2 = a + d = − 13 + 5 = −8✔

 
a 3 = a 2 + d = − 8 + 5 = −3✔

Hence,

The first three terms of this A.P. are −13, −8, and −3 .

Thanks.
Similar questions