Math, asked by sumeetkulkarni513, 1 year ago

The sum of 4th and 9th term of an ap is 46 and their product is 465. find the sum of its first 10th term.

Answers

Answered by hridhya32
6


Here, 
a4 + a9 = 46 
⇒ a + 3d + a + 8d = 46 
⇒ 2a + 11d = 46 
⇒ 2a = 46 – 11d 
⇒ a = 46 – 11d/2 -------------------- (1) 
Also, 
(a4)(a9) = 465 
⇒ (a + 3d)(a + 8d) = 465 
⇒ a2 + 8da + 3da + 24d2 = 465 
⇒ a2 + 11da + 24d2 = 465 
From eqⁿ (1), we get 
⇒ (46 – 11d/2)2 + 11d(46 – 11d/2) + 24d2 = 465 
⇒ 2116 – 506d – 506d + 121d2/4 + 506d – 121d2/2 + 24d2= 465 
⇒2116 – 1012d + 121d2 + 1012d – 24d2 + 96d2 = 1860 
⇒ 2116 – 121d2 + 96d2 = 1860 
⇒ 2116 – 25d2 = 1860 
⇒ 25d2 = 256 
⇒ d2 = 10.24 
⇒ d = 3.2 
From (1), 
⇒ a = 46 – 11(3.2)/2 
⇒ a = 10.8/2 
⇒ a = 5.4 
Now, Sum of first 10 terms 
⇒ S10 = 5[10.8 + (28.8)] 
⇒ 5(39.6) 
⇒198.


hridhya32: hi
hridhya32: fine
hridhya32: dear
Similar questions