The sum of 4th and 9th term of an ap is 46 and their product is 465. find the sum of its first 10th term.
Answers
Answered by
6
Here,
a4 + a9 = 46
⇒ a + 3d + a + 8d = 46
⇒ 2a + 11d = 46
⇒ 2a = 46 – 11d
⇒ a = 46 – 11d/2 -------------------- (1)
Also,
(a4)(a9) = 465
⇒ (a + 3d)(a + 8d) = 465
⇒ a2 + 8da + 3da + 24d2 = 465
⇒ a2 + 11da + 24d2 = 465
From eqⁿ (1), we get
⇒ (46 – 11d/2)2 + 11d(46 – 11d/2) + 24d2 = 465
⇒ 2116 – 506d – 506d + 121d2/4 + 506d – 121d2/2 + 24d2= 465
⇒2116 – 1012d + 121d2 + 1012d – 24d2 + 96d2 = 1860
⇒ 2116 – 121d2 + 96d2 = 1860
⇒ 2116 – 25d2 = 1860
⇒ 25d2 = 256
⇒ d2 = 10.24
⇒ d = 3.2
From (1),
⇒ a = 46 – 11(3.2)/2
⇒ a = 10.8/2
⇒ a = 5.4
Now, Sum of first 10 terms
⇒ S10 = 5[10.8 + (28.8)]
⇒ 5(39.6)
⇒198.
hridhya32:
hi
Similar questions
English,
7 months ago
Math,
7 months ago
English,
1 year ago
Math,
1 year ago
Social Sciences,
1 year ago