Math, asked by muskanshakya396, 10 months ago

the sum of 5th and 7th term of an ap is 52 and the 10th term is 46. find the Ap​

Answers

Answered by Anonymous
12

here your answer........

Attachments:
Answered by Anonymous
16

Given :

Sum of 5th term of and 7th term of an AP is 52.

a_{5}\:+\:a_{7}\:=\:52

And 10th term is 46.

a_{10}\:=\:46

Find :

The AP.

Solution :

According to question,

\Rightarrow\:a_{5}\:+\:a_{7}\:=\:52

Now,

\bold{\boxed{a_{n}\:=\:a\:+\:(n\:-\:1)d}}

\Rightarrow\:a\:+\:(5\:-\:1)d\:+\:a\:+\:(7\:-\:1)d\:=\:52

\Rightarrow\:a\:+\:4d\:+\:a\:+\:6d\:=\:52

\Rightarrow\:2a\:+\:10d\:=\:52

\Rightarrow\:a\:+\:5d\:=\:26

\Rightarrow\:a\:=\:26\:-\:5d ____ (eq 1)

Similarly,

\Rightarrow\:a_{10}\:=\:46

\Rightarrow\:a\:+\:(10\:-\:1)d\:=\:46

\Rightarrow\:a\:+\:9d\:=\:46

\Rightarrow\:26\:-\:5d\:+\:9d\:=\:46

[From (eq 1)]

\Rightarrow\:4d\:=\:20

\rightarrow\:d\:=\:5

Put value of d in (eq 1)

\Rightarrow\:a\:=\:26\:-\:5(5)

\Rightarrow\:a\:=\:26\:-\:25

\rightarrow\:a\:=\:1

So,

AP : a, a + d, a + 2d, a + 3d

  • a = 1
  • a + d = 1 + 5 = 6
  • a + 2d = 1 + 2(5) = 1 + 10 = 11
  • a + 3d = 1 + 3(5) = 1 + 15 = 16

AP is 1, 6, 11, 16....

Similar questions