Math, asked by yuktirahi, 4 months ago

the sum of 5th and 7th terms of an A. P is 56 and the 13th term is 42. find the A. P.​

Answers

Answered by saiyedfazil
6

a5 + a7 = 56

a +4d + a+6d = 56

2a+10d =56

a + 5d = 28 -1

a13 =42

a+12d =42 -2

by subtracting eq 1 and 2

a+5d=28

a+12d =42

we get -7d = -14

d =2

a+5d = 28

a +5×2=28

a =28-10

a=18

AP = 18 , 18+2 , 18+2×2 , 18+ 3×2

=18 , 20 , 22 , 24

please follow me

Answered by suraj5070
158

 \sf \bf \huge {\boxed {\mathbb {QUESTION}}}

\tt The\: sum\: of\: 5th \:and\: 7th\: terms\: of\: an \:A. P \:is \:56 \\\tt and \:the \:13th\: term\: is\: 42.\: Find\: the\: A. P.

 \sf \bf \huge {\boxed {\mathbb {ANSWER}}}

 \sf \bf  {\boxed {\mathbb {GIVEN}}}

  •  \sf \bf 5a+7a=56
  •  \sf \bf 13a=42

 \sf \bf  {\boxed {\mathbb {TO\:FIND}}}

  •  \sf \bf Find \:A.P

 \sf \bf  {\boxed {\mathbb {SOLUTION}}}

 \sf \bf\implies 5a+7a=56

 \sf \bf \implies a+4d+a+6d=56

\implies {\boxed {\sf \bf 2a+10d=56}} -(i)

 \sf \bf \implies 13a=42

 \sf \bf {Multiply\: a+12d=42\:with\:2}

 \sf \bf \implies 2 (a+12d=42)

 \implies{\boxed {\sf \bf 2a+24d=84}}-(ii)

 \tt {\underbrace {Substract\:equation\:(i)\:from\:equation(ii)}}

\sf \bf \: \cancel {2a} +24d=84

\sf \bf \cancel {-2a}-10d=-56

______________________

 \sf \bf 14d=28

 \sf \bf \implies d=\dfrac{28}{14}

 \implies {\boxed {\color {red} {\sf \bf d=2}}}

 \tt \underline {Substitute\:d=2\:in\:equation\:(i)}

 \sf \bf \implies 2a+10d=56

 \sf \bf \implies 2a+10(2)=56

 \sf \bf \implies 2a+20=56

 \sf \bf \implies 2a=56-20

 \sf \bf \implies 2a=36

 \sf \bf \implies a=\dfrac{36}{2}

 \implies {\boxed {\color {red} {\sf \bf a=18}}}

 \tt {\underbrace{General \:form\:of\:A.P}}

 \sf \bf a, a+d, a+2d,a+3d........

 \tt \underline {Substitute\: the\: values}

 \sf \bf \implies 18, 18+2, 18+2(2),18+3(2)........

 \sf \bf\implies 18, 20, 18+4,18+6........

\implies{\boxed {\boxed{\color{purple} {\sf \bf 18, 20, 22,24........}}}}

 \therefore\tt The\:A. P\:is\:18, 20, 22,24.........

 \sf \bf\huge  {\boxed {\mathbb {HOPE \:IT \:HELPS \:YOU}}}

_________________________________________

 \sf \bf\huge  {\boxed {\mathbb {EXTRA\:INFORMATION}}}

 \tt {\underbrace {Formulas \:of\:A. P}}

 \sf \bf a_n=a+(n-1)d

 \sf \bf S_n=\dfrac{n}{2}[a+a_n]

 \sf \bf S_n=\dfrac{n}{2}[2a+(n-1)d]

 {\mathbb{\colorbox {orange} {\boxed{\boxed{\boxed{\boxed{\boxed{\colorbox {lime} {\boxed{\boxed{\boxed{\boxed{\boxed{\colorbox {aqua} {@suraj5070}}}}}}}}}}}}}}}

Similar questions