Math, asked by samadritaach10a17, 5 hours ago

The sum of 5th term and 7th term of
an A.P is 52 and the 10 th term is 46.Find A.P?

Attachments:

Answers

Answered by SparklingBoy
29

♣ Given :-

For an A.P.

5th Term + 7th Term = 52

10th Term = 46

-----------------------

♣ To Find :-

The Corresponding A.P.

-----------------------

♣ Formula For nth Term :-

\large \mathtt{a_n= a + (n - 1)d}

Where :

  • a = First term

  • d = Common difference

-----------------------

♣ Solution -

We Have ,

 \large  \sf{a_{5}  +a_{7}  = 52}\\  \\  \large \sf{ = a + 4d + a + 6d= 52}\\  \\ \large \sf2a + 10d \: \: - - - (1)\\ \\ \large \sf{a_{11} = a + 10d = 46}  \\  \\

Multiplying Both Sides by 2 :

 \large :\longmapsto\sf 2a + 20d = 92\: \: - - - (2)

Subtracting (1) From (2) , We get :-

 \sf10d = 40 \\  \\  \sf d =   \cancel{\frac{40}{10} }\\  \\  \purple{ \Large :\longmapsto  \underline {\boxed{{\bf d = 4} }}}

Putting Value of d in (1) :

:\longmapsto \sf2a + 10 \times 4 = 52 \\  \\  :\longmapsto \sf 2a = 12 \\  \\  :\longmapsto \sf a =  \cancel\dfrac{12}{2}  \\  \\ \purple{ \Large :\longmapsto  \underline {\boxed{{\bf a = 6} }}}

We Know ,

A.P. Having First Term a and common difference d is is of the Form :

a , a + d , a + 2d , . . . .

Hence ,

The Required A.P is :

  \pink{\huge \mathfrak{6  , 10,14,\: . \: . \:  .}}

 \LARGE\red{\mathfrak{  \text{W}hich \:\:is\:\: the\:\: required} }\\ \Huge \red{\mathfrak{ \text{ A}nswer.}}

-----------------------

Answered by Anonymous
121

Required A.P must be

  \color{navy}{\LARGE \pmb{6  , 10,14,\: . \: . \:  .}}

Similar questions