Math, asked by Devnarayan2297, 1 month ago

The sum of 6th and 10th term of AP is 92 and the sum of 8th and 13th ilterm is 112 find the a.p

Answers

Answered by mathdude500
37

\large\underline{\sf{Solution-}}

Let assume that

↝ First term of an AP be a

and

↝ Common difference of an AP be d

According to statement,

↝ The sum of 6th and 10th term of AP is 92.

\rm :\longmapsto\:a_6 + a_{10} = 92

Wᴇ ᴋɴᴏᴡ ᴛʜᴀᴛ,

↝ nᵗʰ term of an arithmetic sequence is,

\begin{gathered}\red\bigstar\:\:{\underline{\orange{\boxed{\bf{\purple{a_n\:=\:a\:+\:(n\:-\:1)\:d}}}}}} \\ \end{gathered}

Wʜᴇʀᴇ,

aₙ is the nᵗʰ term.

a is the first term of the sequence.

n is the no. of terms.

d is the common difference.

Tʜᴜs,

\rm :\longmapsto\:a + (6 - 1)d + a + (10 - 1)d = 92

\rm :\longmapsto\:a + 5d + a + 9d = 92

\rm :\longmapsto\:2a + 14d = 92

\rm :\longmapsto\:2(a + 7d) = 92

\bf\implies \:\boxed{ \tt{ \: a + 7d = 46}} -  -  -  - (1)

According to statement again,

↝ The sum of 8th and 13th term is 112.

\rm :\longmapsto\:a_8 + a_{13} = 112

\rm :\longmapsto\:a + (8 - 1)d + a + (13 - 1)d = 112

\rm :\longmapsto\:a + 7d + a + 12d = 112

\rm :\longmapsto\:2a + 19d= 112

\rm :\longmapsto\:2(46 - 7d) + 19d= 112

\rm :\longmapsto\:92- 14d + 19d= 112

\rm :\longmapsto\:5d= 112 - 92

\rm :\longmapsto\:5d= 20

\bf\implies \:\boxed{ \tt{ \: d \:  =  \: 4 \:  \: }}

↝ On substituting d = 4 in equation (1), we get

\rm :\longmapsto\:a + 7 \times 4 = 46

\rm :\longmapsto\:a + 28= 46

\rm :\longmapsto\:a= 46 - 28

\bf\implies \:\boxed{ \tt{ \: a\:  =  \: 18 \:  \: }}

Hence, The required AP series is

\bf\implies \:\boxed{ \tt{ \: 18,22,26,30, -  -  -  - }}

More to know :

↝ Sum of n  terms of an arithmetic sequence is,

\begin{gathered}\red\bigstar\:\:{\underline{\orange{\boxed{\bf{\green{S_n\:=\dfrac{n}{2} \bigg(2 \:a\:+\:(n\:-\:1)\:d \bigg)}}}}}} \\ \end{gathered}

Wʜᴇʀᴇ,

Sₙ is the sum of n terms of AP.

a is the first term of the sequence.

n is the no. of terms.

d is the common difference.

Similar questions