The sum of a certain number of term of an A.P. series -8,-6,-4,....is 52.what is the numer of term???
Answers
Answered by
32
Hey Jenny,
Let the number of terms is N.
Given,
First term ( a ) = -8
Common difference ( d ) = Difference of two consecutive terms
= ( -6 ) - ( -8 ) = -6 + 8 = 2.
Now,
⇒ Sum of N terms of an A.P. = N/2 { 2 a + ( N - 1 ) d }
⇒ 52 = N/2 { 2 × ( -8 ) + ( N - 1 )2 }
⇒ 52 = N/2 { -16 + 2N - 2 }
⇒ 52 = N/2 ( -18 + 2N )
⇒ 52 × 2 = N ( -18 + 2N )
⇒ 104 = -18N + 2N²
⇒ 104 = 2 ( -9N + N² )
⇒ 104/2 = -9N + N²
⇒ 52 = -9N + N²
⇒ 0 = N² - 9N - 52
⇒ 0 = N² - 13N + 4N - 52
⇒ 0 = N ( N - 13 ) + 4 ( N - 13 )
⇒ 0 = ( N - 13 ) ( N + 4 )
∴ N = either 13 or -4.
But the numbers of terms in an A.P. can't be negative.
Therefore, the possible value is 13.
Hope it helps !!
Let the number of terms is N.
Given,
First term ( a ) = -8
Common difference ( d ) = Difference of two consecutive terms
= ( -6 ) - ( -8 ) = -6 + 8 = 2.
Now,
⇒ Sum of N terms of an A.P. = N/2 { 2 a + ( N - 1 ) d }
⇒ 52 = N/2 { 2 × ( -8 ) + ( N - 1 )2 }
⇒ 52 = N/2 { -16 + 2N - 2 }
⇒ 52 = N/2 ( -18 + 2N )
⇒ 52 × 2 = N ( -18 + 2N )
⇒ 104 = -18N + 2N²
⇒ 104 = 2 ( -9N + N² )
⇒ 104/2 = -9N + N²
⇒ 52 = -9N + N²
⇒ 0 = N² - 9N - 52
⇒ 0 = N² - 13N + 4N - 52
⇒ 0 = N ( N - 13 ) + 4 ( N - 13 )
⇒ 0 = ( N - 13 ) ( N + 4 )
∴ N = either 13 or -4.
But the numbers of terms in an A.P. can't be negative.
Therefore, the possible value is 13.
Hope it helps !!
27jenny:
okkk
Answered by
30
Heya... Friend
I hope this will help you...
I hope this will help you...
Attachments:
Similar questions