Math, asked by divakarannair12345, 3 months ago

the sum of a digit of 2 digit number is 12.the number got by interchanging the digit is 36 more than the original number. what is the number?​

Answers

Answered by Yuseong
11

\underline{ \underline{  \Large \pmb{\mathit{ {Given:}} }} }

• The sum of a digit of 2 digit number is 12.

• The number got by interchanging the digit is 36 more than the original number.

\underline{ \underline{  \Large \pmb{\mathit{ {To \: calculate:}} }} }

• The original number.

\underline{ \underline{  \Large \pmb{\mathit{ {Calculation:}} }} }

As it is a two digit number, so let us assume the original number as 10x + y. Where,

• x = tens digit.

• y = ones digit

As per the given question,

 \longrightarrow \sf { x + y = 12}

Since, the sum of a digit of 2 digit number is 12.

Let it be the equation (i).

From this equation,

 \longrightarrow \sf { x= 12 - y}

Also, the number got by interchanging the digit is 36 more than the original number.

→ Original number = 10x + y

→ Interchanged number = 10y + x

Linear equation formed,

 \longrightarrow \sf {10y +x = 36 + 10x + y  }

Solving further by using transposition method.

 \longrightarrow \sf {10y -y +x = 36 + 10x  }

 \longrightarrow \sf {9y +x = 36 + 10x  }

 \longrightarrow \sf {9y  = 36 + 10x -x  }

 \longrightarrow \sf {9y  = 36 + 9x  }

Substituting the value of x from equation (i).

 \longrightarrow \sf {9y  = 36 + 9(12-y)  }

 \longrightarrow \sf {9y  = 36 + 108 - 9y }

 \longrightarrow \sf {9y  +9y= 36 + 108  }

 \longrightarrow \sf {18y= 144}

 \longrightarrow \sf {y= \dfrac{144}{18}}

 \longrightarrow\boxed{ \sf {y= 8}}

Also, from the equation (i) :-

 \longrightarrow \sf { x= 12 - y}

 \longrightarrow \sf { x= 12 - 8}

 \longrightarrow\boxed{ \sf {x= 4}}

Henceforth, value of x is 4 and y is 8. So,

 \longrightarrow \sf { Original \: Number= 10x + y}

 \longrightarrow \sf { Original \: Number= 10(4) + 8}

 \longrightarrow \sf { Original \: Number= 40 + 8}

 \longrightarrow\boxed{\pmb{ \rm \red { Original \: Number= 48}}}

Therefore, the original number is 48.

Similar questions