Math, asked by pk5050329, 5 months ago

the sum of a num of two digits and of the num formed by reversing the digit is 110 and the difference of the digit is 6. find the number​

Answers

Answered by mathdude500
2

 \tt \: Let \: digit \: at \: unit \: place \: be \: x \\  \tt \: and \\  \tt \: Let \: digit \: at \: tens \: place \: be \: y

 \tt \: So,  \: number  \: formed \:  = 10y + x \\  \tt \: and \\  \tt \: Reverse \: number \:  =  \: 10x + y \:  \:  \:  \:  \:  \:  \:

 \tt \: \begin{gathered}\bf\red{ \tt \:1. \:  According \: to \: statement}\end{gathered}

 \tt \:  ⟼\tt \: 10y + x + 10x + y = 110

\tt \:  ⟼ \tt \: 11x + 11y = 110

\tt\implies \:x \:  +  \: y \:  = 10 -  -  - (1)

 \tt \: \begin{gathered}\bf\red{ \tt \:2. According \: to \: statement}\end{gathered}

 \tt \: difference \: of \: digits \: of \: number \:  = 6

\tt\:  ⟼ x \:  - y \:  = 6 -  -  -  - (2) \\  \tt \: or \\ \tt \:  ⟼y \:  -  \: x \:  = 6 -  -  -  - (3)

☆ Now, solving equation (1) and equation (2)

 \tt \: On  \: adding  \: equation \: (1) \: and \: (2) \: we \: get

 \tt \: \tt \:  ⟼2x \:  = 16

\tt \:  ⟼ \: x \:  =  \: 8 \: -  -  - (4)

 \tt \: On \:  substituting  \: x \:  = 8 \: in \: equation \: (1) \: we \: get

\tt \:  ⟼ \: 8 \:  +  \: y \:  =  \: 10

\tt \:  ⟼ \:  y \:  =  \: 2

\bf\implies \:Hence,  \: number \:  is \:  10y + x = 10 \times 2 + 8 = 28

─━─━─━─━─━─━─━─━─━─━─━─━─

☆ Now, solving equation (1) and equation (3)

 \tt \: On  \: adding  \: equation \: (1) \: and \: (3) \: we \: get

\tt \:  ⟼ \: 2y \:  = 16

\tt \:  ⟼ \: y \:  =  \: 8 -  -  - (5)

\tt \: On \:  substituting  \: y \:  = 8 \: in \: equation \: (1) \: we \: get

\tt \:  ⟼x + 8 \:  = 10

\tt \:  ⟼ \: x \:  =  \: 2

\bf\implies \:Hence,  \: number  \: is \:  10y + x = 10 \times 8 + 2 = 82

─━─━─━─━─━─━─━─━─━─━─━─━─

\begin{gathered}\begin{gathered}\bf Hence, \:  number \:  is -  \begin{cases} &\tt{28} \\ &\tt{82} \end{cases}\end{gathered}\end{gathered}

Similar questions