Math, asked by smartsarthakja5702, 1 year ago

The sum of a number and its recipocal.is 52 /21 find the number

Answers

Answered by Deepsbhargav
17
» let's the required no. be X

» then its reciprocal is = 1/X

Now

» according to the question :-

 = > x + \frac{1}{x} = \frac{52}{21} \\ \\ = > \frac{ {x}^{2} + 1}{x} = \frac{52}{21} \\ \\ = > 21 {x}^{2} + 21 = 52x \\ \\ = > 21 {x}^{2} - 52x + 21 = 0
_______________

» Using factorise formula :-

 = > x = \frac{ - b \binom{ + }{ - } \sqrt{ {b}^{2} - 4ac } }{2a} \\ \\ = > x = \frac{ - ( - 52) \binom{ + }{ - } \sqrt{ { (- 52)}^{2} - 4(21)(21) } }{2 \times 21} \\ \\ = > x = \frac{52\binom{ + }{ - } \sqrt{2704 - 1764} }{42} \\ \\ = > x = \frac{52 \binom{ + }{ - } \sqrt{940} }{42}

___________

so

 = > \frac{1}{x} = \frac{42}{52 \binom{ + }{ - } \sqrt{ 940} }

_____________________[ASNWER]
Answered by Anonymous
12

• Let the number be M

» The sum of a number and its recipocal is 52/21.

• Reciprocaled number = 1/M

A.T.Q.

=> M\:+\:\dfrac{1}{M}\:=\:\dfrac{52}{21}

=> \dfrac{ {M}^{2}  \:  +  \: 1}{M} \:   = \:  \dfrac{52}{21}

Cross-multiply them

=> 21({M}^{2}  \:  +  \: 1)\:=\:52(M)

=> 21{M}^{2}  \:  +  \: 21\:=\:52M

=> 21{M}^{2}  \:-\:52M\:  +  \: 21\:=\:0

____________________________

Now.. solve by using quadratic formula

i.e

Here..

x = M

» M \:  =  \:  \dfrac{ - b  \:  \pm \:  \sqrt{( {b)}^{2}  \:  -  \: 4ac} }{2a}

Put value of a, b and c in above formula

=> M \:  =  \:  \dfrac{ - ( - 52)  \:  \pm \:  \sqrt{( { - 52)}^{2}  \:  -  \: 4(21)(21)} }{2(21)}

=> M \:  =  \:  \dfrac{  52 \:  \pm \:  \sqrt{2704  \:  -  \: 1764} }{42}

=> M \:  =  \:  \dfrac{  52 \:  \pm \:  \sqrt{940} }{42}

_____________________________

Number = M\:  =  \:  \dfrac{  52 \:  \pm \:  \sqrt{940} }{42}

_________ [ ANSWER ]

_____________________________

Similar questions