Math, asked by vermaditya404340, 9 months ago

The sum of a number of 2 digits and of the number formed by reversing the digits is 110,and the difference of the digits is 6. Find the number.

Answers

Answered by TheProphet
2

Solution :

Let the ten's place digit be r & the one's place digit be m respectively;

\boxed{\bf{Original\:number=10r+m}}}}\\\boxed{\bf{Reversed\:number=10m+r}}}}

A/q

\longrightarrow\sf{r-m=6}\\\\\longrightarrow\sf{r=6+m....................(1)}

&

\longrightarrow\sf{(10r+m)+(10m+r)=110}\\\\\longrightarrow\sf{10r+m+10m+r=110}\\\\\longrightarrow\sf{11r+11m=110}\\\\\longrightarrow\sf{11(r+m)=110}\\\\\longrightarrow\sf{r+m=\cancel{110/11}}\\\\\longrightarrow\sf{r+m=10}\\\\\longrightarrow\sf{6+m+m=10\:\:[from(1)]}\\\\\longrightarrow\sf{6+2m=10}\\\\\longrightarrow\sf{2m=10-6}\\\\\longrightarrow\sf{2m=4}\\\\\longrightarrow\sf{m=\cancel{4/2}}\\\\\longrightarrow\bf{m=2}

∴ Putting the value of m in equation (1),we get;

\longrightarrow\sf{r=6+2}\\\\\longrightarrow\bf{r=8}

Thus;

\boxed{\sf{The\:number=10r+m=[10(8) + 2 ] = [80 + 2]=\bf{82}}}}

Answered by koyel17
0

Your answer is in the attachment

Hope this helps you

Please mark me as brainliest

Attachments:
Similar questions