Math, asked by Agent4078, 1 year ago

The sum of a two digit number and the number obtained by reversing the order of its digits is 165. If the digits differ by 3, find the number.

Answers

Answered by dilipkumarprinp4e6xm
12
let the digit in tens be x
let the digit in units be y
so the original number is 10x+y
the numbet reversed is 10y+x
the sum is    10x+y+10y+x=165
                     11x+11y=165
                     divide by 11
                      x+y=15
                      x-y=3
                     y=6
                     x=9
so the number is 96

hope this helps u
mark it as brainliest
Answered by Anonymous
11

\textbf{\underline{\underline{According\:to\:the\:Question}}}

Assumption

★Unit digit be p

★Ten's digit be c

★Situation :-

10c + p + 10p + c = 165

11p + 11c = 165

★Take common we get :-

11(p + c) = 165

\tt{\rightarrow p+c=\dfrac{165}{11}}

p + c = 15 ...... (1)

★Also

p - c = 3 ....... (2)

Or,

c - p = 3 ........ (3)

★Second Situation

c = p - 3 or c = p + 3

★From Equation (1) we have

p + p - 3 = 15 or p + p + 3 = 15

2p = 15 + 3 or 2p = 15 - 3

2p = 18 or 2p = 12

\tt{\rightarrow p=\dfrac{18}{2}\;or\;p=\dfrac{12}{2}}

p = 9 or p = 6

\fbox{Substitute\;1st\;in\;(2)}

9 - c = 3

9 - 3 = c

6 = c

\fbox{Now\;second\;value\;in\;(3)}

c - 6 = 3

c = 3 + 6

c = 9

\Large{\fbox{Number\;is\;69\;or\;96}}

Similar questions