The sum of a two digit number and the numerator formed by interchaning the digit is 110.If 10 is subtracted from the first number, the new number is 4 more than 5 times the sums of the digits of the first number. Find the first number
Answers
Answer:
Assumption
Ones Digit be p
Also
Tens digit be n
Another number
= (10n + p)
Now
Interchanging the digits
Number = (10p + n)
(10n + p) + (10p + n) = 110
11n + 11p = 110
11(n + p) = 110
\tt{\rightarrow n+p=\dfrac{110}{11}}→n+p=
11
110
n + p = 10 …….(1)
n = 10 - p …..…(2)
Hence
(10n + p) - 10 = 4 + 5(n + p)
(10n + p) - 10 = 4 + 5(10)
(10n + p) = 4 + 50 + 10
(10n + p) = 64
10(10 - p) + p = 64
100 - 10p + p = 64
100 - 9p = 64
-9p = 64 - 100
-9p = -36
\tt{\rightarrow p=\dfrac{36}{9}}→p=
9
36
p = 4
p = 4
n = 10 - p
n = 10 - 4
n = 6
Therefore ,
Number is 6
Second number is 4
Another Number
10n + p
= 10 × 6 + 4
= 60 + 4
Number=64
AnotherNumber=64
AnswEr :
Let the Ones Digit be x & Tens Digit be y.
⋆ No. Formed will be : (10y + x)
⋆ No. Formed by Interchanging : (10x + y)
• First Part of the Question :
⇒ Original No. + Interchanging No. = 110
⇒ (10y + x) + (10x + y) = 110
⇒ 11y + 11x = 110
⇒ 11(y + x) = 110
- Dividing Both term by 11
⇒ y + x = 10 ⠀⠀⠀⠀⠀⠀⠀⠀⠀—eq. ( I )
⇒ x = 10 - y ⠀⠀⠀⠀⠀⠀⠀⠀⠀—eq. ( II )
_________________________________
• Second Part of the Question :
⇒ New No. - 10 = 4 + 5 × (Sum of Digits)
⇒ (10y + x) - 10 = 4 + 5 × (y + x)
⇒ 10y + x - 10 = 4 + (5 × 10)
- From eq.( I )
⇒ 10y + x - 10 = 4 + 50
⇒ 10y + x = 54 + 10
- putting the value of x from eq.( I )
⇒ 10y + 10 - y = 54 + 10
⇒ 10y - y = 54 + 10 - 10
⇒ 9y = 54
- Dividing Both term by 9
⇒ y = 6
_________________________________
• Putting the Value of y in eq. ( II ) :
⇒ x = 10 - y
⇒ x = 10 - 6
⇒ x = 4
━━━━━━━━━━━━━━━━━━━━━━━━
• Original Number :
↠ (10y + x)
↠ 10(6) + 4
↠ 60 + 4
↠ 64
∴ Original Number formed will be 64.