Math, asked by godlyzeuscom12, 9 months ago

The sum of a two digit number is 7. if the number formed by reversing the digits is less than the original number by 27,find the original number.

Answers

Answered by ItzAditt007
2

AnswEr:-

Your Answer Is 52.

ExplanaTion:-

Given:-

  • The sum of a digits of a two digit number is 7.

  • If the number formed by reversing the digits is less than the the original number by 27.

To Find:-

  • The Original Number.

So Now,

  • Let the digit at ten's place be x.

  • Let the digit at one's place be y.

So the original number will be 10x+y.

Hence the number formed after reversing the digits would be 10y+x.

Therefore ATQ:-

 \\ \tt\longrightarrow  \fbox{x + y = 7... \: eq(1).} \\

Also the number formed by reversing the digits is 27 less than Original number.

 \\  \tt\longrightarrow(10y + x)= (10x + y )- 27.\\  \\ \tt\longrightarrow(10x + y) - (10y  + x) = 27. \\  \\ \tt\longrightarrow10x + y - 10y - x = 27. \\  \\ \rm(b y\:  \: ope ning \:  \: brackets). \\  \\ \tt\longrightarrow9x - 9y = 27. \\  \\ \tt\longrightarrow9(x - y) = 27. \\  \\ \rm(taking \:  \: 9 \:  \: as \:  \: common). \\  \\ \tt\longrightarrow x - y =  \cancel\dfrac{27}{9} . \\  \\ \tt\longrightarrow \fbox{ x - y = 3... \: eq(2).}

Now,

By adding eq(1) And eq(2) we get:

 \\ \tt\leadsto(x + y) + (x - y) = 7 + 3. \\  \\ \tt\leadsto x  \: \cancel{+ y} \:  + x \:  \cancel{ - y} = 10. \\  \\ \tt\leadsto2x = 10. \\  \\ \tt\leadsto x =  \cancel \frac{10}{2} . \\  \\ \tt\leadsto{\underline  {\underline{   \:  \: x = 5. \:  \: }}} \\

By putting the value of y in eq(1) we get:-

 \\ \tt\leadsto x + y = 7. \\  \\ \tt\leadsto 5 + y = 7. \\  \\ \tt\leadsto y = 7 - 5. \\  \\ \tt\leadsto {\underline {\underline{ \:  \:   y = 2. \:  \: }}} \\

Therefore,

  \\ \rm {\underline{ \underline {\bigstar  \: \: T he \:  \: original \:  \: number \:  \: is: -  }}} \\  \\ \tt\mapsto10x + y. \\  \\   \tt = 10(5) + 2. \\  \\  \tt = 50 + 2.  \\  \\  \tt \fbox {\underline{ \underline{ = 52.}}} \\

\tt\therefore The Original Number Is 52.

Similar questions