Math, asked by deep4026, 2 months ago

The sum of all 3-digit natural numbers which are divisible by 9 is
54243
54351
55350
55242

Answers

Answered by mathdude500
1

\large\underline{\sf{Solution-}}

The 3 digit natural numbers which are divisible by 9 are

\rm :\longmapsto\:108, \: 117, \: 126, \:  -  -  -  -  - , \: 999

So,

It implies, its an AP series as common difference is same.

Thus,

First term of AP, a = 108

Common difference, d = 9

nᵗʰ term of series = 999

Wᴇ ᴋɴᴏᴡ ᴛʜᴀᴛ,

↝ nᵗʰ term of an arithmetic sequence is,

\begin{gathered}\red\bigstar\:\:{\underline{\orange{\boxed{\bf{\green{a_n\:=\:a\:+\:(n\:-\:1)\:d}}}}}} \\ \end{gathered}

Wʜᴇʀᴇ,

  • aₙ is the nᵗʰ term.

  • a is the first term of the sequence.

  • n is the no. of terms.

  • d is the common difference.

Tʜᴜs,

On substituting the values, we get

\rm :\longmapsto\:999 = 108 + (n - 1)9

\rm :\longmapsto\:999 - 108 =  (n - 1)9

\rm :\longmapsto\:891=  (n - 1)9

\rm :\longmapsto\:99=  n - 1

\bf\implies \:n = 100

Now,

Wᴇ ᴋɴᴏᴡ ᴛʜᴀᴛ,

↝ Sum of n  terms of an arithmetic sequence is,

\begin{gathered}\red\bigstar\:\:{\underline{\orange{\boxed{\bf{\green{S_n\:=\dfrac{n}{2} \bigg(\:a\:+a_n \bigg)}}}}}} \\ \end{gathered}

Wʜᴇʀᴇ,

  • Sₙ is the sum of n terms of AP.

  • a is the first term of the sequence.

  • n is the no. of terms.

  • aₙ is the nᵗʰ term.

Tʜᴜs,

\rm :\longmapsto\:S_n = \dfrac{100}{2} (108 + 999)

\rm :\longmapsto\:S_n = 50 \times 1107

\bf :\longmapsto\:S_n = 55350

Additional Information :-

↝ Sum of n  terms of an arithmetic sequence is,

\begin{gathered}\red\bigstar\:\:{\underline{\orange{\boxed{\bf{\green{S_n\:=\dfrac{n}{2} \bigg(2 \:a\:+\:(n\:-\:1)\:d \bigg)}}}}}} \\ \end{gathered}

Wʜᴇʀᴇ,

  • Sₙ is the sum of n terms of AP.

  • a is the first term of the sequence.

  • n is the no. of terms.

  • d is the common difference

Similar questions