Math, asked by chauhan99178, 7 months ago

The sum of all even natural numbers less than hundred is____??​

Answers

Answered by Anonymous
8

\huge\star\:\:{\orange{\underline{\pink{\mathbf{Answer}}}}}

★ Given :

A.P : 2, 4, 6, 8, 10 .............. 98

First tern (a) = 2

Common Difference (d) = 2

Last term (An or L) = 98

_________________________

★ To Find :

Sum of all even terms less than 100.

_________________________

★ Solution :

We know that,

\Large{\boxed{\boxed{\purple{\sf{A_{n} = a + (n - 1)d}}}}}

98 = 2 + (n - 1)2

98 = 2 + 2n - 2

98 = 2n

98/2 = n

49 = n

\large{\boxed{\blue{\sf{Number \: of \: terms \: (n) = 49}}}}

Now,

\Large{\boxed{\boxed{\orange{\sf{S_{n} = \frac{n}{2}(a + L)}}}}}

(Putting Values)

\begin{gathered}\sf{s_{n} = \frac{49}{2}(2 + 98) } \\ \\ \sf{s_{n} = \frac{49}{ \cancel{2}}( \cancel{100}) } \\ \\ \sf{s_{n} = 49 \times 50 } \\ \\ \sf{s_{n} = 2450}\end{gathered}

\large{\boxed{\red{\sf{S_{n} = 2450}}}}

\huge\underline\bold\red{Thanks}

Answered by sumanrudra22843
2

Step-by-step explanation:

Given :

A.P : 2, 4, 6, 8, 10 .............. 98

First tern (a) = 2

Common Difference (d) = 2

Last term (An or L) = 98

_________________________

★ To Find :

Sum of all even terms less than 100.

_________________________

★ Solution :

We know that,

98 = 2 + (n - 1)2

98 = 2 + 2n - 2

98 = 2n

98/2 = n

49 = n

(Putting Values)

\begin{gathered}\begin{gathered}\sf{s_{n} = \frac{49}{2}(2 + 98) } \\ \\ \sf{s_{n} = \frac{49}{ \cancel{2}}( \cancel{100}) } \\ \\ \sf{s_{n} = 49 \times 50 } \\ \\ \sf{s_{n} = 2450}\end{gathered}\end{gathered}

s

n

=

2

49

(2+98)

s

n

=

2

49

(

100

)

s

n

=49×50

s

n

=2450

Similar questions