Math, asked by ajaykumar1275, 8 months ago

The sum of all the integral roots of (log5 x)2 + log5x(5/×)
= 1 ​

Answers

Answered by Qwafrica
0

x = 1 ;  x = 5 ;  x = 1 / 25 ;

Given:

  • (log5 x)^{2} + log_{5x}   (5 / x ) = 1 ​

To Find:

  • The sum of all the integral roots of the given equation.

Solution:

           (log5 x)^{2} + log_{5x}   (5 / x ) = 1 ​

   

            (log5 x)^{2} +  1 / log5 5x - 1 / logx 5x

           (log5 x)^{2} + 1 / log5 5 + log 5 x  -  1 / logx 5 + logx x   = 1 ​

          let   log5 x = t,

        t2 + 1 / 1+t - 1 / (1/t) + 1    = 1

        t ( t2 + t -2 ) = 0

 =) t = 0                                 ∴ t2 + t - 2 = 0

                                        =)     t2 + 2t - t -2 = 0

                                        =)    ( t - 1 ) ( t + 2 ) = 0

log5 x = 0                       log5 x = 1                           log5 x = -2

x = 1                                   x = 1                                 x = (5)^ -2

                                                                                 x =  1 / 25

Therefore,

x = 1 ;

x = 5 ;

x = 1 / 25 ;

#SPJ3

Answered by ushmagaur
0

Answer:

The required answer is 151/25.

Step-by-step explanation:

Rules of the logarithm are:-

  • log a + log b = log(ab)
  • log a - log b = log(\frac{a}{b})
  • log_a(b)=\frac{1}{log_b(a)}

Given:-

(log_5(x))^2 + log_{5x}(\frac{5}{x} )=1

To find:-

The sum of all the integral roots of the expression (log_5(x))^2 + log_{5x}(\frac{5}{x} )=1.

Step 1 of 3

Consider the given logarithm function as follows:

(log_5(x))^2 + log_{5x}(\frac{5}{x} )=1 _____ (1)

Using the rules of logarithm, simplify the expression (1) as follows:

(log_5(x))^2 + log_{5x}(5 )-log_{5x}(x)=1

(log_5(x))^2 +\frac{1}{ log_{5}(5x )}-\frac{1}{log_{x}(5x)}=1 (Since log_a(b)=\frac{1}{log_b(a)})

(log_5(x))^2 +\frac{1}{ log_{5}(5 ) + log_{5}(x)}-\frac{1}{log_{x}(5)+log_{x}(x)}=1

(log_5(x))^2 +\frac{1}{ 1 + log_{5}(x)}-\frac{1}{1/(log_{5}(x))+1}=1 (Since log_x(x)=1)

(log_5(x))^2 +\frac{1}{ 1 + log_{5}(x)}-\frac{log_{5}(x)}{1+log_{5}(x)}=1 ____ (2)

Now,

Let log_{5}(x)=t.

Then the expression (2) becomes,

t^2+\frac{1}{1+t}-\frac{t}{1+t}=1

Further, simplify as follows:

t^2+\frac{1-t}{1+t}=1

t^2(1+t)+1-t=1(1+t)

t^2+t^3+1-t=1+t

t^3+t^2-2t=0 ____ (3)

Step 2 of 3

Find the roots of the cubic equation (3) as follows:

t(t^2+t-2)=0

Using middle-term splitting method, we have

t(t^2+2t-t-2)=0

t(t(t+2)-1(t+2))=0

t(t+2)(t-1)=0

t=0, t=1 and t=-2

1) When t = 0,

Then, log_{5}(x)=0 (Since log_{5}(x)=t)

5^0=x

x=1

2) When t = 1,

Then, log_{5}(x)=1 (Since log_{5}(x)=t)

5^1=x

x=5

3) When t = -2,

Then, log_{5}(x)=-2 (Since log_{5}(x)=t)

5^{-2}=x

x=\frac{1}{5^2}

x=1/25

Step 3 of 3

Find the sum of all the integral roots.

Since the roots are 1, 5 and 1/25.

Then, the sum is,

= 1 + 5 + 1/25

= \frac{25+125+1}{25}

= \frac{151}{25}

Final answer: The required answer is 151/25.

#SPJ2

Similar questions