the sum of all the numbers formed by the digits x,y and z of the number xyz is divisible by
a. 11
b. 33
c. 37
d. 74
rational:
are you considering only 3 digit numbers ?
Answers
Answered by
42
all the different numbers formed by x y and z are:
x y z = 100 x + 10 y + z
x z y = 100 x + 10 z + y
y x z = 100 y + 10 x + z
y z x = 100 y + 10 z + x
z x y = 100 z + 10 x + y
z y x = 100 z + 10 y + x
sum = 200 x + 200 y + 200 z + 20y + 20 x + 20 z + 2 z + 2 x + 3 y
= 222 x + 222 y + 222 z
= 3 * 37 * 2 * (x + y + z)
So the sum is divisible by 37 and 74
x y z = 100 x + 10 y + z
x z y = 100 x + 10 z + y
y x z = 100 y + 10 x + z
y z x = 100 y + 10 z + x
z x y = 100 z + 10 x + y
z y x = 100 z + 10 y + x
sum = 200 x + 200 y + 200 z + 20y + 20 x + 20 z + 2 z + 2 x + 3 y
= 222 x + 222 y + 222 z
= 3 * 37 * 2 * (x + y + z)
So the sum is divisible by 37 and 74
Answered by
4
all the different numbers formed by x y and z are:
x y z = 100 x + 10 y + z
x z y = 100 x + 10 z + y
y x z = 100 y + 10 x + z
y z x = 100 y + 10 z + x
z x y = 100 z + 10 x + y
z y x = 100 z + 10 y + x
sum = 200 x + 200 y + 200 z + 20y + 20 x + 20 z + 2 z + 2 x + 3 y
= 222 x + 222 y + 222 z
= 3 * 37 * 2 * (x + y + z)
So the sum is divisible by 37 and 74
Similar questions
History,
8 months ago
Math,
8 months ago
English,
8 months ago
Social Sciences,
1 year ago
English,
1 year ago