Math, asked by dshah2004, 10 months ago

The sum of an infinite G.P. is 2 and the sum of G.P. made by
the cubes of this infinite series is 24 then the second term of
infinite G.P. is :-
(1) 3
(2) -3
(3)3/2
(4)-3/2​

Answers

Answered by amansharma264
33

EXPLANATION.

  • GIVEN

sum of an infinite G.P = 2

the sum of G. P made by the cube of this infinite

series = 24

To find second term of G. P

Formula of infinite G. P

      \bigstar\green{\boxed{\bold{s_{ \infty} \:  =  \frac{a}{1 - r}  \:  \: when \:  \: 0 < r < 1}}}

Given,

 \bold{ \frac{a}{1 - r} = 2 \:  \: ....(1) }

 \bold{ \frac{ {a}^{3} }{1 -  {r}^{3} }  = 24}  \:  \: ......(2)

multiply equation (1) by cube

and divide equation (1)^3 ÷ (2)

we get,

=>  \bold{ \frac{ {a}^{3} }{(1 - r) {}^{3} } } \times  \frac{1 -  {r}^{3} }{ {a}^{3} } =   \frac{ {2}^{3} }{24}

=>   \bold{\frac{1 -  {r}^{3} }{(1 - r) {}^{3} }  =  \frac{1}{3}}

=>    \bold{\frac{1 + r +  {r}^{2} }{(1 - r) {}^{2} }  =  \frac{1}{3} }

=>  \bold{3 + 3r + 3 {r}^{2}  =  {r}^{2}  + 1 - 2r}

=>   \bold{{2r}^{2}  + 5r + 2 = 0}

=>  \bold{2r {}^{2}  + 4r + r + 2 = 0}

=>  \bold{2r(r + 2) + 1(r + 2) = 0}

=>  \bold{(2r + 1)(r + 2) = 0}

=>  \bold{r \:  =  \frac{ - 1}{2}  \:  \: and \:  \: r \:  =  - 2}

when r = -1/2

put r = -1/2 in equation (1) we get,

a = 3

Therefore,

sequence will written as = 3 , -3/2, 3/4 .....

second term of infinite gp = -3/2

Answered by Anonymous
175

GIVEN :

  • Sum of an infinite G.P is 2.
  • The sum of G.P. made by the cubes of this infinite series is 24.

TO FIND :

  • The second term of G. P.

FORMULA :

Formula of Infinite G.P.

{\boxed{\bold{s_{ \infty} \: = \frac{a}{1 - r} \: \: when \: \: 0 < r < 1}}}

Given that,

{ \frac{a}{1 - r} = 2 \: \: ......(i) }

{ \frac{ {a}^{3} }{1 - {r}^{3} } = 24} \: \: ..........(ii)

Multiply equation (i) by cube,

Divide equation (i)³ ÷ (ii)

Now,

{ \frac{ {a}^{3} }{(1 - r) {}^{3} } } \times \frac{1 - {r}^{3} }{ {a}^{3} } = \frac{ {2}^{3} }{24}

 =  > {\frac{1 - {r}^{3} }{(1 - r) {}^{3} } = \frac{1}{3}}

 =  > {\frac{1 + r + {r}^{2} }{(1 - r) {}^{2} } = \frac{1}{3} }

 =  > {3 + 3r + 3 {r}^{2} = {r}^{2} + 1 - 2r}

 =  > {{2r}^{2} + 5r + 2 = 0}

 =  > 2 {r}^{2}  + 4r + r + 2 = 0

 =  > {2r(r + 2) + 1(r + 2) = 0}

 =  > {(2r + 1)(r + 2) = 0}

 =  > {r \: = \frac{ - 1}{2} \: \: and \: \: r \: = - 2}

When r =  \frac{ - 1}{2}

Put r =  \frac{ - 1}{2}   \: in  \: equation \:  (i)

We get,

a = 3

Sequence will written as = 3,\frac{ - 3}{2},\frac{3}{4}

Answer :

Second term of infinite G.P. =  \frac{ - 3}{2}

Similar questions