Math, asked by shubhangidimri07, 6 months ago

the sum of AP 2,5,8..... up to 50 terms is a)3557 b)3775 c)3757 d)3575​

Answers

Answered by suraj5070
397

 \huge {\boxed {\mathbb {QUESTION}}}

The sum of AP 2,5,8..... up to 50 terms is

a)3557 b)3775 c)3757 d)3575

 \huge {\boxed {\mathbb {ANSWER}}}

 {\boxed {\mathbb {GIVEN}}}

 2,5,8..... up to 50 terms

 a=2,d=3,n=50

 {\boxed {\mathbb {TO\:PROVE}}}

 Sum\: of \:50 \:terms\: of\: the\: AP

 Formula=\\S_n=\frac{n}{2}[2a+(n-1)d]

 Substitute\: the\: values

 \implies S_50=\frac{50}{2}[2(2)+(50-1)3]

 \implies S_50=25[4+(49)3]

 \implies S_50=25[4+147]

 \implies S_50=25[151]

 \implies {\boxed {\boxed {S_50=3775}}}

 \huge {\boxed {\mathbb {HOPE \:IT \:HELPS \:YOU}}}

_________________________________________

 \huge {\boxed {\mathbb {EXTRA\:INFORMATION}}}

 Formulas

 a_n=a+(n-1)d

 S_n=\frac{n}{2}[2a+(n-1)d]

 S_n=\frac{n}{2}[a+a_n]

 {\mathbb{\colorbox {orange} {\boxed{\boxed{\boxed{\boxed{\boxed{\colorbox {lime} {\boxed{\boxed{\boxed{\boxed{\boxed{\colorbox {aqua} {@suraj5070}}}}}}}}}}}}}}}

Answered by syed2020ashaels
1

We are given an AP series

Let

a0 = 2 \\ a1 = 5 \\ a2 = 8 \\ ....upto \: 50 \: terms

We need to calculate the sum of 50 terms of the given AP series.

The formula to calculate the sum of n terms of AP series is

sn = n \div 2(2a + (n - 1)d) \\

Here

a =  \: first \: term \: of \: the \: sequence \\  = 2 \\ d = common \: difference = a1 - a0 \\  = 5 - 2 \\  = 3 \\ n = number \: of \: terms = 50

By substituting the above values in the equation we get

sn = 50 \div 2(2 \times 2 + (50 - 1)3) \\  = 25(4 + 49(3)) \\  = 25(4 + 147) \\  = 25(151) \\  = 3775

Therefore, sum of the given AP series upto 50 terms is

3775

Hence, the correct option is b

#SPJ2

Similar questions