the sum of digit of a two digit number is 7 the number obtained by inter change the digit exceed the original number by 27 find the number
Answers
Answered by
11
Let the tens and units digit be x and y respectively.
In the given question,
x + y = 7 ------ [Equation 1]
Tens | Ones
x | y
Original Number → 10x + y
On Reversing,
Tens | Ones
y | x
Interchanged number → 10y + x
Here,
10y + x = 27 + (10x + y)
⇒ 10y + x = 27 + 10x + y
⇒ 10y - y = 27 + 10x - x
⇒ 9y = 27 + 9x
⇒ 9y - 9x = 27
⇒ 9(y - x) = 27
⇒ y - x = 27 ÷ 9
⇒ y - x = 3
⇒ -x + y = 3 ----- [Equation 2]
Adding Equation 1 and 2,
x + y = 7
{+} -x + y = 3
2y = 10
⇒ y = 10 ÷ 2
∴ y = 5
Substitute value of y in Equation 1;
x + y = 7
⟶ x + 5 = 7
⟶ x = 7 - 5
∴ x = 2
The original number is of the form 10x + y
10x + y
= 10(2) + 5
= 20 + 5
= 25
∴ The Required number is 25
Similar questions