The sum of digits a two-digit number 12 . if the new number formed by reversing the digits is greater than the original number by 54 , find the original number .find the original number . check your solution .
MAKE IT on page .
First one will Mark as BRAINLIST
Answers
Answered by
523
let a and b the digit
a+b=12 ........(1)
54+(10a+b)=(10b+a)
54+10a+b=10b+a
9a-9b=-54
a-b=-6........(2)
adding (1) and (2)
a+b=12
a-b=-6
----------
2a=6
a=3
so b=9
39+54=93 (verified)
orig no.=39 and No. when digits reversed=93
a+b=12 ........(1)
54+(10a+b)=(10b+a)
54+10a+b=10b+a
9a-9b=-54
a-b=-6........(2)
adding (1) and (2)
a+b=12
a-b=-6
----------
2a=6
a=3
so b=9
39+54=93 (verified)
orig no.=39 and No. when digits reversed=93
Answered by
36
Given:
The sum of a two-digit number is 12.
To Find:
The original number
Solution:
Let the two numbers be 'a' and 'b'
It is given that the sum of digits is a two-digit number 12.
Then,
⇒ a + b = 12 ..(i)
It is given that the new number formed by reversing the digits is greater than the original number by 54.
⇒ 54 + (10a + b) = (10b + a)
⇒ 54 + 10a + b = 10b + a
⇒ 9a - 9b = -54
⇒ a - b = -6 ..(ii)
Now, adding (i) and (ii)
⇒ a + b = 12
⇒ a - b = -6
⇒ 2a = 6
⇒ a = 3
So, b = 9
Now, to verify the solution,
39 + 54 = 93
So, the original number is 39 and when it is reversed is 93.
Similar questions