Math, asked by sanjeevanand4767, 11 months ago

The sum of digits in a two digit number is 9 the number obtained by interchanging digit exceeds the original number by 27. Find the two digit number

Answers

Answered by Sauron
53

Answer:

The original number is 36.

Step-by-step explanation:

Given :

Sum of the digits = 9

Number obtained by interchanging digit exceeds the original number by = 27

To find :

The original number

Solution :

\textsf{\underline{\underline{Original number -}}}

  • Units place as y
  • Tens place as (9 - y)

\sf{\longrightarrow} \: 10(9 - y) + y \\  \\ \sf{\longrightarrow} \: 90 - 10 + y \\  \\ \sf{\longrightarrow} \: 90 - 9y \:----\rm{\gray{(Original \: Number)}}

\rule{300}{1.5}

\textsf{\underline{\underline{Number with reversed digits -}}}

  • Units place = (9 - y)
  • Tens place = y

\sf{\longrightarrow} \: 10(y) + 9 - y \\  \\\sf{\longrightarrow} \: 10y + 9 - y \\   \\ \sf{\longrightarrow} \: 9y + 9----\rm{\gray{(Number \: with \: reversed \: digits)}}

\rule{300}{1.5}

\textsf{\underline{\underline{According to the question - }}}

Number obtained by interchanging digit exceeds the original number by 27.

\sf{\longrightarrow} \: 9y + 9 = 90 - 9y + 27 \\  \\ \sf{\longrightarrow} \: 9y + 9 = 117 - 9y \\  \\ \sf{\longrightarrow} \: 9y + 9y = 117 - 9 \\  \\ \sf{\longrightarrow} \: 18y = 108 \\  \\ \sf{\longrightarrow} \: y =  \dfrac{108}{18}  \\  \\ \sf{\longrightarrow} \: y = 6

\rule{300}{1.5}

\textsf{\underline{\underline{Original Number - }}}

\sf{\longrightarrow} \: 90 - 9y \\  \\ \sf{\longrightarrow} \: 90 - 9(6) \\  \\ \sf{\longrightarrow} \: 90 - 54 \\  \\ \sf{\longrightarrow} \: 36

Orignal number = 36

\therefore The original number is 36.

Answered by RvChaudharY50
45

||✪✪ QUESTION ✪✪||

The sum of digits in a two digit number is 9 the number obtained by interchanging digit exceeds the original number by 27. Find the two digit number

|| ✰✰ ANSWER ✰✰ ||

Let The Original Number be (10x + y) . where as (x + y) is 9 .

After interchanging The Digits = (10y+x) .

So,

x + y = 9 ------------- Equation

And,

(10y+x) - (10x +y) = 27

10y + x - 10x - y = 27

→ 9y - 9x = 27

→ 9(y - x) = 27

Dividing both sides by 9,

(y - x) = 3 ----------- Equation ❷

Adding Equation & Now, we get,

(x + y) + (y - x) = 9 + 3

☛ 2y = 12

Dividing both sides by 2 ,

y = 6

Putting The value in Equation Now,

x + 6 = 9

☛ x = 9-6

☛ x = 3

Hence, The Required Two - Digit Number = 10x + y = 10*3 + 6 = 36 (Ans).

Similar questions