The sum of digits of a two digit no is 8. If difference between the
Reverse no and original no is 18. Find the number
Answers
Answer:
Step-by-step explanation:
Let the unit's digit be x and tens digit be y
So according to the question,
x+y=8. eq 1...
The two digit number is in the form 10y+x
Reverse number =10x+y
according to the question,
10x+y-(10y+x)=18
10y+x-10x-y=18
-9x+9y=18
(÷9)
-x+y=2
y=2+x eq 2...
Equating eq1 and eq2 we get,
2+x+x=8
2x=6
x=3
Therefore y=2+x
y=5
HOPE THIS HELPS YOU
Answer:
Step-by-step explanation:
Solution:-
Let the unit place digit be x.
And the tens place digit be y.
Number = 10y + x
Reversed Number = 10x + y
According to the Question,
⇒ x + y = 8 ... (i)
⇒ (10y + x) - (10x + y) = 18
⇒ 10y + x - 10x - y = 18
⇒ 9y - 9x = 18
⇒9(y - x) = 18
⇒ y - x = 18/9
⇒ y - x = 2 ... (ii)
Solving Eq (i) and (ii), we get
⇒ y = 5
Putting y's value in Eq (i), we get
⇒ x + y = 8
⇒ x + 5 = 8
⇒ x = 8 - 5
⇒ x = 3
Hence the required number is 53.