Math, asked by jaani2729, 10 months ago

The sum of digits of a two digit number is 13. If sum of their squares is 89, find the
number.​

Answers

Answered by mysticd
3

 Let \: x \:and \: ( 13 - x ) \:are \: digits \: in \:a \\two \: digit \: number

 The \: number = 10x + 13 - x \\= 9x + 13 \: ---(1)

/* According to the problem given */

 x^{2} + ( 13 - x )^{2} = 89

 \implies x^{2} + 13^{2} - 2 \times 13 \times x + x^{2} = 89

\implies x^{2} + 169 - 26x + x^{2} - 89 = 0

 \implies 2x^{2} - 26x + 80 = 0

/* Divide each term by 2 , we get */

 \implies x^{2} - 13x + 40 = 0

/* Splitting the middle term,we get */

 \implies x^{2} - 5x - 8x + 40 = 0

 \implies x( x - 5 ) - 8( x - 5 ) = 0

 \implies ( x - 5 )( x - 8 ) = 0

 \implies x - 5  = 0\: Or \: x - 8  = 0

 \implies x = 5  \: Or \: x = 8

Case 1 :

 If \: x = 5 , then \\ the \: number \\= 9x +13 \\= 9 \times 5 + 13 \\= 45 + 13 \\= 58

Case 2:

 If \: x = 8 , then \\ the \: number \\= 9x +13 \\= 9 \times 8 + 13 \\= 72 + 13 \\= 85

Therefore.,

 \red { Required \: number \: is } \green { = 58 \: Or \: 85 }

•••♪

Similar questions