Math, asked by Ansh112850, 10 months ago

The sum of digits of a two digit number is 7. If 27 is added to the number the digits interchange their places.
Find the number.

Answers

Answered by kandk384
56

Step-by-step explanation:

Let the digit at the tens' place be x

and the digit at the ones' place be y.

According to the question ,

x + y = 7 .... (a)

& 10x + y + 27 = 10y + x

=> 9x - 9y = - 27

=> 9(x-y) = - 27

=> x - y = -27/9

=> x - y = -3 ..... (b)

Adding equation (a) and (b) ,

x + y + x -y = 7 - 3

=> 2x = 4

=> x = 2

Putting the value of x in (a) ,

2 + y = 7

=> y = 7 - 2 = 5

Therefore , reqd. no. = 10x + y

= 10 × 2 + 5

= 20 + 5

= 25 ( Ans )

Hope you understand ...

#answerwithquality

#BAL

Answered by StarrySoul
103

\mathfrak{\huge{\underline{Solution:}}}

\textbf{\huge{\underline{Given:}}}

●Sum of digits = 7

● The digits interchange after adding 27

_______________________________

Let the digit at units place be y and digit at tens place be x

 \star\sf \:Original\: No. \:  = 10x + y

  \star \sf \: Interchanged \: No. = 10y + x

\textbf{\underline{\underline{According\:To\:Question:}}}

 \hookrightarrow \rm \: x + y = 7......eq.(i)

Now,

 \hookrightarrow \rm \: 10x + y + 27 = 10y + x

 \hookrightarrow \rm10x - x + y - 10y =  - 27

 \hookrightarrow \rm9x - 9y =  - 27

 \hookrightarrow \rm9(x - y) =  - 27

 \hookrightarrow \rm \: x - y =  \dfrac{ - 27}{9}

 \hookrightarrow \rm \: x - y =   3......eq.(ii)

_______________________________

Adding eq.(i) and eq.(ii)

 \hookrightarrow \rm x + y + x - y = 7 - 3

 \hookrightarrow \rm2x = 4

 \hookrightarrow \rm \: x =  \dfrac{4}{2}

 \hookrightarrow \rm \: x =  \large \boxed{2}

Putting the value of x = 2 in eq.(i)

 \hookrightarrow \rm \: x + y = 7

 \hookrightarrow \rm \: 2 + y = 7

 \hookrightarrow \rm \: y = 7 - 2

 \hookrightarrow \rm \: y =  \large \boxed{5}

Hence the Digits are : 2 and 5

________________________________

 \star \sf \: Original \: Number =25

 \star \sf \: Interchanged \: No. = 52

Similar questions