Math, asked by pundirdushyant165, 10 months ago

The sum of digits of a two digit number is 7.The number obtained,on reversing the order of digits is greater than original number by 9. Find the number.

Answers

Answered by debanshbiswal9531
17

Step-by-step explanation:

let the no.s be x and y

then x+y= 7 (according to question )

ATQ, 10x+y+9=10y+x

=9y-9x=9

=y-x=1

then x+y+y-x= 7+1

2y=8

y=4

x=3

NO.= 34

Answered by Anonymous
22

\bf{\Huge{\boxed{\tt{\red{ANSWER\::}}}}}

\bf{\Large{\underline{\sf{Given\::}}}}

The sum of digit of a two digit number is 7. The number obtained, on reversing the order of digits is greater than original number by 9.

\bf{\Large{\underline{\sf{To\:find\::}}}}

The number.

\bf{\Large{\underline{\rm{\green{Explanation\::}}}}}

  • Let the ten's digit be M.
  • Let the unit's digit be R.

A/q

\longmapsto\tt{M\:+\:R\:=\:7......................(1)}

When the digits are reversed, the number is 9 more than original number.

\rm{The\:original\:number\:=\:10R+M}

\rm{The\:reversed\:Number\:=\:10M+R}

So,

\mapsto\tt{10M +R\:=\:10R+M+9}

\mapsto\tt{10M-M+R-10R=9}

\mapsto\tt{9M\:-\:9R\:=\:9}

\mapsto\tt{9(M-R)=9}

\mapsto\tt{M\:-\:R\:=\:\cancel{\frac{9}{9} }}

\mapsto\tt{M\:-\:R\:=\:1...........................(2)}

\bf{\Large{\boxed{\rm{Using\:Substitution\:Method\::}}}}}}

From equation (1), we get;

\longmapsto\sf{M+R\:=\:7}

\longmapsto\sf{M\:=7-R............................(3)}

Putting the value of M in equation (2), we get;

\longmapsto\sf{7\:-\:R\:-\:R\:=\:1}

\longmapsto\sf{7\:-2R\:=\:1}

\longmapsto\sf{-2R\:=\:1-7}

\longmapsto\sf{-2R\:=\:-6}

\longmapsto\sf{R\:=\:\cancel{\frac{-6}{-2} }}

\longmapsto\sf{\red{R\:=\:3}}

Putting the value of R in equation (3), we get;

\longmapsto\sf{M\:=\:7-3}

\longmapsto\sf{\red{M\:=\:4}}

Thus,

\leadsto\rm{The\:original\:number\:is\:10R+M}

\leadsto\rm{The\:original\:number\:is\:10(3)+4}

\leadsto\rm{\red{The\:original\:number\:is\:30+4\:=\:34.}}

Similar questions