Math, asked by mdminhaj2310, 5 months ago

The sum of digits of a two digit number is 9. Also nine times this number is twice the number obtained by revering the order of the digits. Find the number

Answers

Answered by EliteZeal
91

A n s w e r

 \:\:

G i v e n

 \:\:

  • The sum of digits of a two digit number is 9

  • Nine times the original number is twice the number obtained by revering the order of the digits

 \:\:

F i n d

 \:\:

  • The number

 \:\:

S o l u t i o n

 \:\:

  • Let the ones digit be "y"

  • Let the tens digit be "x"

 \:\:

 \underline{\bold{\texttt{Original number :}}}

 \:\:

➠ 10x + y ⚊⚊⚊⚊ ⓵

 \:\:

 \underline{\bold{\texttt{Reversed number :}}}

 \:\:

➠ 10y + x

 \:\:

 \underline{\bold{\texttt{9 times the original number :}}}

 \:\:

➜ 9(10x + y) ⚊⚊⚊⚊ ⓶

 \:\:

 \underline{\bold{\texttt{2 times the reversed number :}}}

 \:\:

➜ 2(10y + x) ⚊⚊⚊⚊ ⓷

 \:\:

Given that , The sum of digits of a two digit number is 9

 \:\:

So ,

 \:\:

➜ x + y = 9 ⚊⚊⚊⚊ ⓸

 \:\:

Also given that , nine times the original number is twice the number obtained by revering the order of the digits

 \:\:

Thus ,

 \:\:

Equation ⓶ = Equation ⓷

 \:\:

➜ 9(10x + y) = 2(10y + x)

 \:\:

➜ 90x + 9y = 20y + 2x

 \:\:

➜ 90x - 2x = 20y - 9y

 \:\:

➜ 88x = 11y

 \:\:

Dividing the above equation by 11

 \:\:

 \sf \dfrac { 88x} { 11 } = \dfrac { 11y } { 11 }

 \:\:

➜ 8x = y ⚊⚊⚊⚊ ⓹

 \:\:

Putting y = 8x from ⓹ to ⓸

 \:\:

➜ x + y = 9

 \:\:

➜ x + 8x = 9

 \:\:

➜ 9x = 9

 \:\:

➜ x = 1 ⚊⚊⚊⚊ ⓺

 \:\:

  • Hence the tens digit is 1

 \:\:

Putting x = 1 from ⓺ to ⓸

 \:\:

➜ x + y = 9

 \:\:

➜ 1 + y = 9

 \:\:

➜ y = 9 - 1

 \:\:

➜ y = 8 ⚊⚊⚊⚊ ⓻

 \:\:

  • Hence the ones digit is 8

 \:\:

Putting x = 1 & y = 8 from ⓺ & ⓻ to ⓵

 \:\:

➜ 10x + y

 \:\:

➜ 10(1) + 8

 \:\:

➜ 10 + 8

 \:\:

➨ 18

 \:\:

  • Hence the original number is 18

Similar questions