The sum of digits of a two-digit numbers is 15.The number obtained by interchanging its digits exceeds the given number by 9.Find the original number.
Answers
Answered by
36
HEYA!
--------
----------------------------------------------------------------------------------------------------
Let the digit at ones place be X
Let the digit at tens place be Y
According to question,
X + Y = 15 ---------------------------------------------------(1)
Number formed : X + 10 Y
Reversed number = 10X + Y
According to question,
X + 10 Y + 9 = 10 X + Y ---------------------------------------------------(2)
= X - 10 X + 10 Y - Y +9 = 0
= -9X + 9 Y + 9 = 0
Taking 9 common
-9 ( X - Y -1 ) = 0
X - Y = 1 ---------------------------------------------------(3)
----------------------------------------------------------------------------------------------------
✳Solving eq . ( 1) and (3) by elimination method,
X + Y = 15
X - Y = 1
+. +. +
2X = 16
X = 8.
Putting X = 8 in (3)
8-Y = 1
-Y = -7
Y= 7.
Hence the number formed = X + 10Y
= 8 + 70
= 78.
Reversed number = 10X + Y
80 + 7 = 87.
---------------------------------------------------
----------------------------------------------------------------------------------------------------☺
--------
----------------------------------------------------------------------------------------------------
Let the digit at ones place be X
Let the digit at tens place be Y
According to question,
X + Y = 15 ---------------------------------------------------(1)
Number formed : X + 10 Y
Reversed number = 10X + Y
According to question,
X + 10 Y + 9 = 10 X + Y ---------------------------------------------------(2)
= X - 10 X + 10 Y - Y +9 = 0
= -9X + 9 Y + 9 = 0
Taking 9 common
-9 ( X - Y -1 ) = 0
X - Y = 1 ---------------------------------------------------(3)
----------------------------------------------------------------------------------------------------
✳Solving eq . ( 1) and (3) by elimination method,
X + Y = 15
X - Y = 1
+. +. +
2X = 16
X = 8.
Putting X = 8 in (3)
8-Y = 1
-Y = -7
Y= 7.
Hence the number formed = X + 10Y
= 8 + 70
= 78.
Reversed number = 10X + Y
80 + 7 = 87.
---------------------------------------------------
----------------------------------------------------------------------------------------------------☺
chinmaybala698p81bej:
Thank you
Answered by
144
Answer:
Step-by-step explanation:
Given :-
Sum of digits of a two-digit numbers is 15.The number obtained by interchanging its digits exceeds the given number by 9.
To Find :-
The Original Number
Solution :-
Let the tens digit number be x
And the units digits number be y
Original number = (10x + y)
According to the Question
1st Equation
x + y = 15 ……..(i)
2nd Equation
Number obtained on reversing its digits = (10y + x)
⇒ (10y + x) = (10x + y) + 9
⇒ 10y + x – 10x – y = 9
⇒ 9y – 9x = 9
⇒ y – x = 1 …….(ii)
On adding (i) and (ii)
⇒ 2y = 16
⇒ y = 8
Putting all the values in Eq (i)
⇒ x + y = 15
⇒ x + 8 = 15
⇒ x = (15 – 8)
⇒ x = 7
Number = (10x + y)
= 10 × 7 + 8
= 70 + 8
= 78
Hence, the original number is 78.
Similar questions