Math, asked by karunakar899, 7 months ago

the sum of digits oftwo digit number is 13. if the number is subtracted from the one obtained by interchanging the digits the result is 45.what is the number​

Answers

Answered by MaIeficent
7

Step-by-step explanation:

\bf\underline{\underline{\red{Given:-}}}

  • The sum of digits of a two digit number is 13.

  • If the number is subtracted from the one obtained by reversing the digits the result is 45.

\bf\underline{\underline{\blue{To\: Find:-}}}

  • The original number.

\bf\underline{\underline{\green{Solution:-}}}

Let the tens digit of the number be x

And ones digit be y

Then:-

The original number = 10x + y

The number obtained by reversing the digits = 10y + x

Case 1:-

\rm The\:  sum \: of \: the \: digits\: is\: 13

\rm x + y = 13.......(i)

Case 2:-

If the number is subtracted from the one obtained by reversing the digits the result is 45.

\rm Reversed\: number - Original \: number = 45

\rm \implies 10y + x - ( 10x + y ) = 45

\rm \implies 10y + x - 10x - y  = 45

\rm \implies 9y - 9x = 45

Dividing the whole equation by 9

\rm \implies \dfrac{9y}{9} - \dfrac{9x}{9} = \dfrac{45}{9}

\rm \implies y - x = 5......(ii)

Adding equations (i) and (ii)

\rm \implies x + y + y - x = 13 + 5

\rm \implies 2y = 18

\rm \implies y = \dfrac{18}{2}

\rm \implies y = 9

Substituting y = 9 in equation (i)

\rm \implies x + y = 13

\rm \implies x + 9 = 13

\rm \implies x  = 13- 9

\rm \implies x  = 4

The original number = 10(x) + y

= 10(4) + 9

= 40 + 9

= 49

\underline{\boxed{\purple{\rm \therefore The \: number = 49}}}

Similar questions