The sum of first 10 terms of an ap is - 150 and the sum of its next 10 terms is -550. Find the AP.
Answers
Answered by
9
Let to sum of first 10 terms of an ap =Sn
the sum of its next 10 terms of an ap =sn'
S₁₀ = -150
S₁₀ + S'₁₀ = S₂₀
Given :-
S'₁₀ = -550
Therefore ,
S₂₀ = -150 -550
= -700
--------------------------------------------------
Lets form two linear equations and solve it :-
S₁₀ = -150
n = 10
Sn = n/2 [ 2a + (n-1)d]
-150= 10/2 [ 2a + 9d ]
-150 = 5 [ 2a + 9d ]
-30 = 2a + 9d
2a + 9d = -30 (Equation 1)
===========
S₂₀ = -700
numbers of terms n = 20
Sn = n/2 [ 2a + (n-1)d]
-700 = 20/2 [ 2a + 19d ]
-700 = 10 [ 2a + 19d ]
-70 = 2a + 19d
2a + 19d = -70 (-equation 2)
solving equations 1 and 2 :-
(2) - (1)
2a + 19d = -70
2a + 9d = -30
--------------------------------
10d = -40
d = -40/10 = -4
Substitute the value of d in equation;
2a + 9d = -30
2a -36 = -30
2a = -30+36
a = 6/2 = 3
a=3
---------------------------------------------
According to the question:-
first term (a )= 3
Common difference ( d)= -4
Arithmetic progressions:
3,-1,-5,-9
Thanks!!!
the sum of its next 10 terms of an ap =sn'
S₁₀ = -150
S₁₀ + S'₁₀ = S₂₀
Given :-
S'₁₀ = -550
Therefore ,
S₂₀ = -150 -550
= -700
--------------------------------------------------
Lets form two linear equations and solve it :-
S₁₀ = -150
n = 10
Sn = n/2 [ 2a + (n-1)d]
-150= 10/2 [ 2a + 9d ]
-150 = 5 [ 2a + 9d ]
-30 = 2a + 9d
2a + 9d = -30 (Equation 1)
===========
S₂₀ = -700
numbers of terms n = 20
Sn = n/2 [ 2a + (n-1)d]
-700 = 20/2 [ 2a + 19d ]
-700 = 10 [ 2a + 19d ]
-70 = 2a + 19d
2a + 19d = -70 (-equation 2)
solving equations 1 and 2 :-
(2) - (1)
2a + 19d = -70
2a + 9d = -30
--------------------------------
10d = -40
d = -40/10 = -4
Substitute the value of d in equation;
2a + 9d = -30
2a -36 = -30
2a = -30+36
a = 6/2 = 3
a=3
---------------------------------------------
According to the question:-
first term (a )= 3
Common difference ( d)= -4
Arithmetic progressions:
3,-1,-5,-9
Thanks!!!
Anonymous:
:)
Answered by
18
Hey there !!
Let a be the first term and d be the common difference of the given AP .
S₁₀ = -150.
⇒ Sn = n/2 [ 2a + (n-1)d]
⇒ S₁₀ = 10/2 [ 2a + ( 10 - 1 ) d ].
⇒ -150= 10/2 [ 2a + 9d ]
⇒ -150 = 5 [ 2a + 9d ]
⇒ -30 = 2a + 9d
⇒2a + 9d = -30...........(1)
Clearly, the sum 20 term = - 150 + (-550) .
⇒ S₂₀ = -700
⇒ Sn = n/2 [ 2a + (n-1)d]
⇒ S₂₀ = 20/2 [ 2a + ( 20 - 1 )d ] .
⇒ -700 = 20/2 [ 2a + 19d ]
⇒ -700 = 10 [ 2a + 19d ]
⇒ -70 = 2a + 19d .
⇒ 2a + 19d = -70........(2)
Substracting 1 and 2 , we get
2a + 19d = -70
2a + 9d = -30
- - +
____________
⇒ 10d = -40
⇒ d = -40/10 = -4
Put the value of d in equation 1.
2a + 9d = -30
⇒ 2a -36 = -30
⇒ 2a = -30+36
⇒ a = 6/2 = 3
a = 3
d = -4
Hence, AP is 3,-1,-5, - 9 ....
THANKS
#BeBrainly.
Similar questions
World Languages,
7 months ago
Chemistry,
7 months ago
Music,
7 months ago
World Languages,
1 year ago
Math,
1 year ago