Math, asked by sindhusagar, 9 months ago

The sum of first 20 terms of A. p is 400 and the sum of first 40 terms is 1600 find the sum of first 10th term​

Answers

Answered by nirakshiverma221
0

Answer:

2,070

Step-by-step explanation:

this answer help you ok

Answered by TheVenomGirl
36

AnSwer:

Let a be the first term and d be the common difference of the given A.P.

★ Sum of the first 20 terms is S(20).

So,

: \implies \sf \:  \:  \: S(20) =  \dfrac{20}{2}(2a + 19d) \\  \\ : \implies \sf \:  \:  \:400 =  \dfrac{20}{2}( 2a + 19d)\\ \\ : \implies \sf \:  \:  \: 400 = 10(2a + 19d)\\ \\ : \implies \sf \:  \:  \: 2a + 19d = 40 ..... (i) \\ \\  : \implies \sf \:  \:  \: Here, S(40) =  \dfrac{40}{2} (2a + 39d) \\ \\ : \implies \sf \:  \:  \:1600 = 20(2a + 39d)\\ \\ : \implies \sf \:  \:  \: 2a + 39d = 80 ....(ii)

Now, further solving these equations,

: \implies \sf \:  \:  \:20d = 40 \\  \\ : \implies \sf \:  \:  \:d =  \dfrac{40}{20}  \\  \\ : \implies \sf \:  \:  { \underline{ \boxed{ \sf { \red{\:d = 2 \: }}}}} \:  \bigstar

Now, substitute this value in eqn (2)

 : \implies \sf \:  \: 2a + 19d = 40 \\  \\  : \implies \sf \:  \:2a + 19(2) = 40 \\  \\ : \implies \sf \:  \: 2a + 38 = 40 \\ \\  : \implies \sf \:  \: 2a = 40 - 38 \\ \\  : \implies \sf \:  \: 2a = 2 \\ \\ : \implies \sf \:  \:   a =  \dfrac{2}{2}  \\   \\  : \implies \sf \:  { \underline{ \boxed{ \sf { \purple{ \:a = 1 \: }}}}} \:  \bigstar

According to the question,

 : \implies \sf \:  \: S(10) = [2 \times 1 + (10 - 1)2] \\ \\ : \implies \sf \:  \: S(10) = 5[2 + 9 \times 2] \\  \\ : \implies \sf \:  \:S(10) = 5[2 + 18] \\ \\ : \implies \sf \:  \: S(10) = 5  \times 20 \\  \\ : \implies \sf \: { \underline{ \boxed{ \bf{ \pink {\:S(10) = 100}}}}} \: \bigstar

Therefore , the sum of its first 10 terms is 100.

Similar questions