Math, asked by anujsinghjls7088, 1 year ago

The sum of first 20 terms of an A.P. is one third of the sum of next 20 terms. If first term is 1 , then find the sum of the first 30 terms?

Plz guys ans... its urgent!!

Answers

Answered by sivaprasath
1
Solution:

Given: The sum of first 20 terms of an AP is one-third of the sum o next 20 terms.
which means,   S_{20}=(S_{40}-S_{20})/3
The first term is 1 
which means,  a=1

To find: sum of first 30 terms (S_{30})

By using the formula,S_n=n(a+l)/2,

          S_{20}=(S_{40}-S_{20})/3
          20(1+a_{20})/2=(40(1+a_{40})/2-20(1+a_{20})/2)/3
          [tex]10(1+a_{20})=[(20(1+a_{40})-10(1+a_{20})]/3 [/tex]                                                                                                                                                       [tex]10(1+a_{20})=10[2(1+a_{40})-(1+a_{20})]/3 [/tex]
         

          (1+a_{20})=[2+2a_{40}1-a_{20}]/3
          [tex]3(1+a_{20})=1+a_{40}-a_{20} [/tex]
          1+a_{20}=1+a_{40}-a_{20}/3
          3+3a_{20}=1+a_{40}-a_{20}
          [tex]2+4a_{20}=a_{40} [/tex]
          [tex]4a_{20}=a_{40}-2 [/tex]
          a_{20}=(a_{40}-2)/4 ....(i)

          a+19d=a+39d-2
          1+19d=1+39d-2
          [tex]1+19d=39d-1 [/tex]
          1+1=39d-19d
          20d=2
          d=1/10  .....(ii)

          a_{30} =a +29d
          1+29/10=39/10=3.9 =>a_{30}=3.9 ....(iii)

         S_n=n(a+l)/2
         S_{30}=30(1+3.9)/2
         [tex]S_{30}=15(4.9) [/tex]
         ∴S_{30}=73.5      Hope it helps

   

sivaprasath: mark as brainliest,as it took 20 mins to type,but a few seconds to think
Similar questions