Math, asked by gvaibhav8120, 1 year ago

The sum of first 20 terms of an ap is 400 and sum of first 40 terms is 1600. Find the sum of its 10terms

Answers

Answered by Anonymous
3

\Large{\textbf{\underline{\underline{According\;to\;the\;Question}}}}

Assume

First term be a

Also,

Common difference be d

Now,

Sum of the 1st 20 terms = S(20)

S(20) = 20/2(2a + 19d)

Putting the values,

400 = 20/2(2a + 19d)

400 = 10(2a + 19d)

2a + 19d = 40 ............................. (1)

Here,

S(40) = 40/2(2a + 39d)

Putting the values,

1600 = 20(2a + 39d)

2a + 39d = 80 ............................ (2)

Now,

From (1) & (2) we get,

20d = 40

d = 40/20

d = 2

Now,

Substitute the value of d in (1),

2a + 19d = 40

2a + 19(2) = 40

2a + 38 = 40

2a = 40 - 38

2a = 2

a = 2/2

a = 1

Now,

S(10) = [2 × 1 + (10 - 1)2]

S(10) = 5[2 + 9 × 2]

S(10) = 5[2 + 18]

S(10) = 5 × 20

S(10) = 100

Therefore,

Sum of its 1st 10 terms = 100

Answered by Anonymous
2

Let us assume that ,

The first term and common difference of an AP be " a " and " d "

First Condition :

The sum of first 20 terms of an ap is 400

Thus ,

\sf \Rightarrow 400 =  \frac{20}{2} (2a + 19d)</p><p> \\  \\ \sf \Rightarrow </p><p>400 = 10(2a + 19d)</p><p> \\  \\ \sf \Rightarrow </p><p>2a + 19d = 40  \:  -  -  \: (i)

Second Condition :

The sum of first 40 terms of an AP is 1600

Thus ,

\sf \Rightarrow 1600 =  \frac{40}{2}(2a + 39d) \\  \\ \sf \Rightarrow  1600 = 20(2a + 39d) \\  \\ \sf \Rightarrow </p><p></p><p>2a + 39d = 80  \:  -  -  \:  (ii)

Subtract eq (i) from eq (ii) , we get

\sf \Rightarrow 20d = 40</p><p> \\  \\ \sf \Rightarrow </p><p>d =  \frac{40}{20} </p><p> \\  \\ \sf \Rightarrow </p><p>d = 2

Put the value of d = 2 in eq (i) , we get

\sf \Rightarrow 2a + 19(2) = 40 \\  \\ \sf \Rightarrow </p><p></p><p>2a + 38 = 40 \\  \\ \sf \Rightarrow </p><p></p><p>2a = 2 \\  \\ \sf \Rightarrow </p><p></p><p>a = 1

Now , we have to find the sum of first 10 terms of an AP

Thus ,

\sf \Rightarrow S_{10}=  \frac{10}{2}  \{2 × 1 + (10 - 1)2 \}</p><p></p><p> \\  \\ \sf \Rightarrow S_{10}= 5 \{2 + 9 × 2 \}</p><p> \\  \\ \sf \Rightarrow </p><p>S_{10}= 5 × 20</p><p></p><p> \\  \\ \sf \Rightarrow S_{10}= 100</p><p>

 \therefore \bold{ \underline{ \sf{The \:  sum \:  of \:  first  \: 10 \:  terms  \: of  \: an  \: AP \:  is  \: 100}}}

Similar questions