Math, asked by kritiKumari1, 1 year ago

the sum of first 20 terms of an AP is 400 and the sum of first 40 terms is 1600 . find s10

Answers

Answered by harshitakssharm
9
S 20 =400
a + 19d=400_____1
S 40 =1600
a+39d=1600____2
sub.eq1 by 2
a+39d=1600
a+19d=400
-. -. -
20d=1200
d= 1200÷20
d=60

then you can put value of d in eq1 ......you will get value of a
......and then put value of a&d in term ....a1 to a10....
Answered by Anonymous
16

Answer:100.


Step-by-step explanation:

Hey there !!




Given :-


 \begin{lgathered}S_{20} = 400. \\ \\ = > \frac{n}{2} (2a + (n - 1)d) = 400. \\ \\ = > \frac{20}{2} (2a + (20 - 1)d) = 400. \\ \\ = > 10(2a + 19d) =4 00. \\ \\ = > 2a + 19d = \frac{400}{10} . \\ \\ = > 2a + 19d = 40..........(1).\end{lgathered}



And,


 \begin{lgathered}S_{40} = 1600. \\ \\ = > \frac{n}{2} (2a + (n - 1)d) = 1600. \\ \\ = > \frac{40}{2} (2a + (40 - 1)d) = 1600. \\ \\ = > 20(2a + 39d) =16 00. \\ \\ = > 2a + 39d = \frac{1600}{20} . \\ \\ = > 2a + 39d = 80..........(2).\end{lgathered}




Substracting in equation (2) and (1) , we get


2a + 39d = 80 .

2a + 19d = 40 .

(-).....(-).......(-).

___________


=> 20d = 40 .


=> d = 40/20 .


•°• d = 2 .



On putting the value of d in equation (1), we get


=> 2a + 19(2) = 40.


=> 2a = 40 - 38 .


=> 2a = 2 .


=> a = 2/2 .


•°• a = 1 .



Now,


 \begin{lgathered}S_{10} = \frac{n}{2} (2a + (n - 1)d). \\ \\ = \frac{10}{2} (2 \times 1 + (10 - 1)2). \\ \\ = 5(2 + 18). \\ \\ = 5 \times 20. \\ \\ \huge \boxed{ \green{ = 100.}}\end{lgathered}



✔✔ Hence, it is solved ✅✅.




THANKS



#BeBrainly.

Similar questions