Math, asked by raza4376216, 10 months ago

The sum of first 20 terms of AP 3,7,11,15 using formula

Answers

Answered by Anonymous
7

\Large{\underline{\underline{\mathfrak{\bf{\red{Solution}}}}}}

\Large{\underline{\mathfrak{\bf{\orange{Given}}}}}

  • Terms of AP 3 , 7 , 11 , 15 ........

\Large{\underline{\mathfrak{\bf{\orange{Find}}}}}

  • Sum of 20 terms of given AP series

\Large{\underline{\underline{\mathfrak{\bf{\red{Explanation}}}}}}

Formula of Sum of Nth terms

\small\boxed{\underline{\tt{\green{\:S_{n}\:=\:\dfrac{n}{2}\times (2a+(n-1)d)}}}}

Where,

  • n = Number of terms
  • a = first terms
  • d = common difference

On this series

  • n = 20
  • a = 3
  • d = 4

So, using formula for Sum of 20 terms

\mapsto\tt{\:S_{20}\:=\:\dfrac{20}{2}\times(2*3+(20-1)*4)} \\ \\ \mapsto\tt{\:S_{20}\:=\:10\times(6+19*4)} \\ \\ \mapsto\tt{\:S_{20}\:=\:10\times(6+76)} \\ \\ \mapsto\tt{\:S_{20}\:=\:10\times82} \\ \\ \mapsto\tt{\orange{\:S_{20}\:=\:820}}

\Large{\underline{\underline{\mathfrak{\bf{\red{Hence}}}}}}

  • Sum of 20 terms of give series will be = 820

__________________

Answered by BrainlyIAS
10

Given AP is 3 , 7 , 11 , 15 , .....

First term , a = 3

Common difference , d = 7-3 = 4

Sum of n terms in an AP is ,

 \underbrace{\bold{\bf{\red{S_n=\frac{n}{2}[2a+(n-1)d] }}}}

Now we need to find the sum of 20 terms of an AP.

\rightarrow \bold{S_{20}=\frac{20}{2}[2(3)+(20-1)4] }\\\\\rightarrow \bold{S_{20}=10[6+76]}\\\\\rightarrow \bold{\bf{\blue{S_{20}=820}}}

So the sum of first 20 terms of AP 3,7,11,... is 820.

Similar questions