Math, asked by lavanyaradha, 1 year ago


The sum of first 25 terms of an A.P., whose nth term is given by Tn= (7 - 3n) is
(1) - 800
(2) – 850
(3) - 900
(4) - 950​

Answers

Answered by ihrishi
4

Step-by-step explanation:

Given:

t_n= 7-3n \\  \therefore \: \:  \:  \:  t_1= 7-3 \times 1 = 7 - 3 = 4 \\and \:  t_2= 7-3 \times 2 = 7 - 6 = 1\\ thus \: a = 4 \\ d = 1 - 4 =  - 3 \\ now \\  \because \: s_{n} =  \frac{n}{2}  \{2a + (n - 1)d \}  \\  \therefore \: s_{25} =  \frac{25}{2}  \{2 \times 4 + (25- 1)( - 3) \} \\ \therefore \: s_{25} =  \frac{25}{2}  \{8 +24( - 3) \} \\ \therefore \: s_{25} =  \frac{25}{2}  \{8  - 72 \} \\ \therefore \: s_{25} =  \frac{25}{2}   \times ( - 64) \\  \therefore \: s_{25} =  25 \times ( - 32) \\ \therefore \: s_{25} =   - 800

Thus, the sum of first 25 terms is - 800.

Similar questions