The sum of first 30 and 40 terms of an ap is 2265 and 4020,then find the d of the ap
Answers
Answered by
4
Sum of n Term of an A.P = (n/2)[2a+(n-1)d]
a - first term
d - common difference
n - number of terms
2265 = (30/2)[2a+(30-1)d]
2265 = 15 [2a+29d]
2265 = 30a + 435d - - - - - - - Eqn(1)
4020 = (40/2)[2a+(40-1)d]
4020 = 20[2a+39d]
4020 = 40a + 780d - - - - - - - Eqn(2)
Eqn(1) X 4 =>
9060 = 120a + 1740d - - - - - - - - Eqn (3)
Eqn(2) x 3 =>
12060 = 120a + 2340d - - - - - - - - - Eqn (4)
Eqn(4) - Eqn(3) =>
3000 = 600d
d = 3000/600 = 5
a - first term
d - common difference
n - number of terms
2265 = (30/2)[2a+(30-1)d]
2265 = 15 [2a+29d]
2265 = 30a + 435d - - - - - - - Eqn(1)
4020 = (40/2)[2a+(40-1)d]
4020 = 20[2a+39d]
4020 = 40a + 780d - - - - - - - Eqn(2)
Eqn(1) X 4 =>
9060 = 120a + 1740d - - - - - - - - Eqn (3)
Eqn(2) x 3 =>
12060 = 120a + 2340d - - - - - - - - - Eqn (4)
Eqn(4) - Eqn(3) =>
3000 = 600d
d = 3000/600 = 5
sreekanthedpl:
please mark my answer as Brainliest
Similar questions