Math, asked by pranavtapkir378, 4 months ago

The sum of first 55 terms is an A.P is 3300
Find its 28th term​

Answers

Answered by ShírIey
9

❍ Given, sum of first 55 terms of Arithmetic Progression (AP) is 3300.

⠀⠀⠀━━━━━━━━━━━━━━━━━━⠀⠀

For any Arithmetic Progression (AP), the sum of n terms is Given by :

⠀⠀⠀

\bf{\dag}\quad\large\boxed{\sf S_n = \dfrac{n}{2}\bigg(2a + (n - 1)d \bigg)}

⠀⠀⠀

Where :

  • n = No. of terms
  • a = First Term
  • d = Common difference

⠀⠀⠀

\underline{\bf{\dag} \:\mathfrak{Substituting \: values \: now \: :}}

⠀⠀⠀

:\implies\sf S_{55} = \dfrac{55}{2} \bigg(2a + (n - 1) d\bigg) \\\\\\:\implies\sf S_{55} = \dfrac{55}{2} \Big(2a + 54d \Big) \\\\\\:\implies\sf  3300 = \dfrac{55}{\cancel{\:2}} \:\cancel{\:2} \Big(a + 27 \Big)\\\\\\:\implies\sf    3300 = 55 \Big(a + 27 d \Big)\\\\\\:\implies\sf \cancel\dfrac{3300}{55}  = a + 27d\\\\\\:\implies\sf   a + 27d = 60\qquad\quad\bigg\lgroup\bf Equation \:(I) \bigg\rgroup

⠀⠀⠀

⠀⠀⠀━━━━━━━━━━━━━━━━━━⠀⠀

◗ We've to find out the 28th term.

⠀⠀⠀

\bf{\dag}\quad\large\boxed{\sf t_n = \bigg(a + (n - 1)d \bigg)}

⠀⠀⠀

Therefore,

⠀⠀

:\implies\sf t_{28} = a + (28 - 1)d \\\\\\:\implies\sf t_{28} = a + 27d\qquad\quad\bigg\lgroup\bf From \: eq. \: (I) \:\bigg\rgroup\\\\\\:\implies{\underline{\boxed{\frak{\purple{t_{28} = 60}}}}}\:\bigstar

⠀⠀⠀

\therefore\:{\underline{\sf{Hence, \ 28th \: term \: of \: AP \ is \ \bf{60}.}}}⠀⠀⠀

Answered by mathdude500
5

\large\underline\blue{\bold{Given \:  Question :-  }}

  • The sum of first 55 terms is an A.P is 3300. Find its 28th term.

\huge {AηsωeR} ✍

─━─━─━─━─━─━─━─━─━─━─━─━─

{ \boxed {\bf{Given : -  }}}

  • The sum of first 55 terms is an A.P is 3300.

{ \boxed {\bf{To  \: Find :  - }}}

  • Find its 28th term

─━─━─━─━─━─━─━─━─━─━─━─━─

\large\underline\blue{\bold{Formula \:  used:-  }}

Let us consider an AP series whose first term is a and common difference is d, then

Sum of first 'n' terms is given by

\bf \:S_n =  \dfrac{n}{2} (2a + (n - 1)d)

and nth term is given by

\bf \:t_n =  a + (n - 1)d)

─━─━─━─━─━─━─━─━─━─━─━─━─

\large\underline\purple{\bold{Solution :-  }}

\begin{gathered}\begin{gathered}\bf Let = \begin{cases} &\sf{a \:  be \:  the \:  first \:  term \: of \: an \: AP} \\ &\sf{d  \: be \:  the  \: common \:  difference \:  of \:  an \:  AP} \\ &\sf{n \: be \: the \: number \: of \: terms \: of \: AP} \end{cases}\end{gathered}\end{gathered}

☆Since, sum of 55 terms = 3300

☆It means n = 55.

☆Using formula of sum of n terms,

\bf \:S_n =  \dfrac{n}{2} (2a + (n - 1)d)

☆On substituting the values, we get

\sf \: ⟼3300 = \dfrac{55}{2} (2a + (55 - 1) \times d)

\sf \:  ⟼3300 = \dfrac{55}{2} (2a + 54d)

\sf \:  ⟼3300 = \dfrac{55}{2}  \times 2(a + 27d)

\sf \:  ⟼3300 = 55 \times (a + 27d)

\bf\implies \:a + 27d = 60

\bf\implies \:a + (28 - 1)d = 60

\bf\implies \:t_{28} = 60

─━─━─━─━─━─━─━─━─━─━─━─━─

{ \boxed {\bf{Hence, {28}^{th} \:  term  \:of \: an \: AP \:  is  \: 60}}}

Similar questions