Math, asked by namukk2005, 8 months ago

the sum of first 6 terms of an ap is 102 amd sum of its first 10 terms is 290. find the ap​

Answers

Answered by Ataraxia
5

SOLUTION :-

\boxed{\bf Sum \ of \  n \ terms = \dfrac{n}{2}\times (2a+(n-1)d)}

\bullet \sf \ S_6 = 102

  \longrightarrow \sf \dfrac{6}{2}\times (2a+(6-1)d)= 102 \\\\\longrightarrow 6\times (2a+5d) = 204 \\\\\longrightarrow 2a+5d =34 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ ................(1)

\bullet \sf \ S_{10 }= 290

  \longrightarrow \sf \dfrac{10}{2}\times (2a+(10-1)d)= 290 \\\\\longrightarrow 10\times (2a+9d) = 580 \\\\\longrightarrow 2a+9d = 58 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ ................(2)

Equation (2) - Equation (1),

\longrightarrow \sf 4d = 24 \\\\\longrightarrow \bf d = 6

Substitute the value of d in equation (1),

\longrightarrow \sf 2a+9\times 6 = 58 \\\\\longrightarrow 2a+54 = 58 \\\\\longrightarrow 2a= 4 \\\\\longrightarrow\bf a = 2

AP = 2 , 8 , 14 , 20 , 26 , ......................

Similar questions