The sum of first 6 terms of an ap is 36 and the sum of its first 16 term is 256 find the sum of first 10 terms of this AP
Answers
Question :-
The sum of first 6 terms of an ap is 36 and the sum of its first 16 term is 256 find the sum of first 10 terms of this AP.
Answer :-
- Sum is 100.
Step by step explanation :-
By first condition,
We know that,
Now,
by second condition,
Subtracting (1) from (2),
Substituting d = 2 in Eqⁿ (1)
Answer :
- The sum of first 10 terms is 100.
▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬
Learn more from brainly :
The sum of 4th and 6th term of g.p is 80 while the product of 3rd and 5th term is 256 find the first term.
https://brainly.in/question/15277524
Step-by-step explanation:
The sum of first 6 terms of an ap is 36 and the sum of its first 16 term is 256 find the sum of first 10 terms of this AP.
Answer :-
Sum is 100.
Step by step explanation :-
By first condition,
We know that,
\begin{gathered}\rm:\longmapsto{S_n = \frac{n}{2} [2a + (n - 1)d]} \\ \end{gathered}
:⟼S
n
=
2
n
[2a+(n−1)d]
Now,
\begin{gathered}\rm:\longmapsto{36 = \frac{6}{2} [2a + (6 - 1)d]} \: \: \: \: \: \\ \\ \rm:\longmapsto{ \frac{72}{6} = 2a + 5d} \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \\ \\ \rm:\longmapsto{2a + 5d = 12} - - - (1)\end{gathered}
:⟼36=
2
6
[2a+(6−1)d]
:⟼
6
72
=2a+5d
:⟼2a+5d=12−−−(1)
by second condition,
\begin{gathered}\rm:\longmapsto{256 = \frac{16}{2}[2a + (16 - 1)d] } \: \: \: \: \\ \\\rm:\longmapsto{ \frac{256 \times 2}{16} = 2a + 15d} \: \: \: \: \: \: \: \: \: \: \: \: \: \\ \\ \rm:\longmapsto{2a + 15d = 32 - - - - (2)}\end{gathered}
:⟼256=
2
16
[2a+(16−1)d]
:⟼
16
256×2
=2a+15d
:⟼2a+15d=32−−−−(2)
Subtracting (1) from (2),
\begin{gathered}\rm:\longmapsto{2a + 15d - (2a + 5d) = 32 - 12} \\ \\ \rm:\longmapsto{2a - 2a + 15d - 5d = 20} \: \: \: \: \: \: \: \: \: \: \: \: \: \\ \\ \rm:\longmapsto{10d = 20} \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \\ \\ \rm:\longmapsto{d = \cancel \frac{20}{10} } \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \\ \\ \bf:\longmapsto \red{d = 2} \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \end{gathered}
:⟼2a+15d−(2a+5d)=32−12
:⟼2a−2a+15d−5d=20
:⟼10d=20
:⟼d=
10
20
:⟼d=2
Substituting d = 2 in Eqⁿ (1)
\begin{gathered}\rm:\longmapsto{2a + 5(2) = 12} \\ \\ \rm:\longmapsto{2a + 10 = 12} \: \: \: \\ \\ \rm:\longmapsto{2a = 12 - 10} \: \: \\ \\ \rm:\longmapsto{2a = 2} \: \: \: \: \: \: \: \: \: \: \: \: \: \: \\ \\ \bf:\longmapsto \red{a = 1} \: \: \: \: \: \: \: \: \: \: \: \: \: \: \end{gathered}
:⟼2a+5(2)=12
:⟼2a+10=12
:⟼2a=12−10
:⟼2a=2
:⟼a=1
\small\bf{\therefore \: The \: sum \: of \: first \: 10 \: terms \: of \: an \: AP}∴Thesumoffirst10termsofanAP
\begin{gathered}\rm:\longmapsto{S_{10} = \frac{10}{2} [2(1) + (10 - 1)2]} \\ \\ \rm:\longmapsto{S_{10} = 5 (20) } \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \\ \\ \bf:\longmapsto \red{S_{10} = 100} \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \end{gathered}
:⟼S
10
=
2
10
[2(1)+(10−1)2]
:⟼S
10
=5(20)
:⟼S
10
=100
Answer :
The sum of first 10 terms is 100.
▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬
Learn more from brainly :
The sum of 4th and 6th term of g.p is 80 while the product of 3rd and 5th term is 256 find the first term.
https://brainly.in/question/15277524