Math, asked by atif6969, 9 days ago

The sum of first 6 terms of an ap is 36 and the sum of its first 16 term is 256 find the sum of first 10 terms of this AP

Answers

Answered by MathCracker
15

Question :-

The sum of first 6 terms of an ap is 36 and the sum of its first 16 term is 256 find the sum of first 10 terms of this AP.

Answer :-

  • Sum is 100.

Step by step explanation :-

By first condition,

We know that,

\rm:\longmapsto{S_n =  \frac{n}{2} [2a + (n - 1)d]} \\

Now,

\rm:\longmapsto{36 = \frac{6}{2}  [2a + (6 - 1)d]} \:  \:  \:  \:  \:  \\  \\ \rm:\longmapsto{ \frac{72}{6}  = 2a + 5d} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\ \rm:\longmapsto{2a + 5d = 12} -  -  - (1)

by second condition,

\rm:\longmapsto{256 =  \frac{16}{2}[2a + (16 - 1)d] } \:  \:  \:  \:  \\  \\\rm:\longmapsto{ \frac{256 \times 2}{16}  = 2a + 15d}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \\  \\ \rm:\longmapsto{2a + 15d = 32 -  -  -  - (2)}

Subtracting (1) from (2),

\rm:\longmapsto{2a + 15d - (2a + 5d) = 32 - 12} \\  \\ \rm:\longmapsto{2a - 2a + 15d - 5d = 20} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\ \rm:\longmapsto{10d  = 20} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\ \rm:\longmapsto{d = \cancel  \frac{20}{10} } \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\ \bf:\longmapsto \red{d = 2} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

Substituting d = 2 in Eqⁿ (1)

\rm:\longmapsto{2a + 5(2) = 12} \\  \\ \rm:\longmapsto{2a + 10 = 12} \:  \:  \:  \\  \\ \rm:\longmapsto{2a = 12 - 10} \:   \:  \\  \\ \rm:\longmapsto{2a = 2} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\ \bf:\longmapsto \red{a = 1} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

 \small\bf{\therefore \:  The \:  sum  \: of  \: first  \: 10  \: terms \:  of  \: an  \: AP}

\rm:\longmapsto{S_{10} = \frac{10}{2}  [2(1) + (10 - 1)2]} \\  \\ \rm:\longmapsto{S_{10} = 5 (20)  } \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\ \bf:\longmapsto \red{S_{10} = 100} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

Answer :

  • The sum of first 10 terms is 100.

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Learn more from brainly :

The sum of 4th and 6th term of g.p is 80 while the product of 3rd and 5th term is 256 find the first term.

https://brainly.in/question/15277524

Answered by biharis01
0

Step-by-step explanation:

The sum of first 6 terms of an ap is 36 and the sum of its first 16 term is 256 find the sum of first 10 terms of this AP.

Answer :-

Sum is 100.

Step by step explanation :-

By first condition,

We know that,

\begin{gathered}\rm:\longmapsto{S_n = \frac{n}{2} [2a + (n - 1)d]} \\ \end{gathered}

:⟼S

n

=

2

n

[2a+(n−1)d]

Now,

\begin{gathered}\rm:\longmapsto{36 = \frac{6}{2} [2a + (6 - 1)d]} \: \: \: \: \: \\ \\ \rm:\longmapsto{ \frac{72}{6} = 2a + 5d} \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \\ \\ \rm:\longmapsto{2a + 5d = 12} - - - (1)\end{gathered}

:⟼36=

2

6

[2a+(6−1)d]

:⟼

6

72

=2a+5d

:⟼2a+5d=12−−−(1)

by second condition,

\begin{gathered}\rm:\longmapsto{256 = \frac{16}{2}[2a + (16 - 1)d] } \: \: \: \: \\ \\\rm:\longmapsto{ \frac{256 \times 2}{16} = 2a + 15d} \: \: \: \: \: \: \: \: \: \: \: \: \: \\ \\ \rm:\longmapsto{2a + 15d = 32 - - - - (2)}\end{gathered}

:⟼256=

2

16

[2a+(16−1)d]

:⟼

16

256×2

=2a+15d

:⟼2a+15d=32−−−−(2)

Subtracting (1) from (2),

\begin{gathered}\rm:\longmapsto{2a + 15d - (2a + 5d) = 32 - 12} \\ \\ \rm:\longmapsto{2a - 2a + 15d - 5d = 20} \: \: \: \: \: \: \: \: \: \: \: \: \: \\ \\ \rm:\longmapsto{10d = 20} \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \\ \\ \rm:\longmapsto{d = \cancel \frac{20}{10} } \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \\ \\ \bf:\longmapsto \red{d = 2} \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \end{gathered}

:⟼2a+15d−(2a+5d)=32−12

:⟼2a−2a+15d−5d=20

:⟼10d=20

:⟼d=

10

20

:⟼d=2

Substituting d = 2 in Eqⁿ (1)

\begin{gathered}\rm:\longmapsto{2a + 5(2) = 12} \\ \\ \rm:\longmapsto{2a + 10 = 12} \: \: \: \\ \\ \rm:\longmapsto{2a = 12 - 10} \: \: \\ \\ \rm:\longmapsto{2a = 2} \: \: \: \: \: \: \: \: \: \: \: \: \: \: \\ \\ \bf:\longmapsto \red{a = 1} \: \: \: \: \: \: \: \: \: \: \: \: \: \: \end{gathered}

:⟼2a+5(2)=12

:⟼2a+10=12

:⟼2a=12−10

:⟼2a=2

:⟼a=1

\small\bf{\therefore \: The \: sum \: of \: first \: 10 \: terms \: of \: an \: AP}∴Thesumoffirst10termsofanAP

\begin{gathered}\rm:\longmapsto{S_{10} = \frac{10}{2} [2(1) + (10 - 1)2]} \\ \\ \rm:\longmapsto{S_{10} = 5 (20) } \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \\ \\ \bf:\longmapsto \red{S_{10} = 100} \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \end{gathered}

:⟼S

10

=

2

10

[2(1)+(10−1)2]

:⟼S

10

=5(20)

:⟼S

10

=100

Answer :

The sum of first 10 terms is 100.

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Learn more from brainly :

The sum of 4th and 6th term of g.p is 80 while the product of 3rd and 5th term is 256 find the first term.

https://brainly.in/question/15277524

Similar questions