Math, asked by kirtitripathi4659, 5 hours ago

The sum of first 7term of an arithmetic sequence 119 and sum of first 20terms is 860 and find its fourth term

Answers

Answered by krishpmlak
0

Answer:

Step-by-step explanation:

Attachments:
Answered by mathdude500
4

\large\underline{\sf{Solution-}}

Let assume that

First term of an AP series = a

Common difference of an AP series = d

Wᴇ ᴋɴᴏᴡ ᴛʜᴀᴛ,

↝ Sum of n  terms of an arithmetic sequence is,

\begin{gathered}\red\bigstar\:\:{\underline{\orange{\boxed{\bf{\green{S_n\:=\dfrac{n}{2} \bigg(2 \:a\:+\:(n\:-\:1)\:d \bigg)}}}}}} \\ \end{gathered}

Wʜᴇʀᴇ,

  • Sₙ is the sum of n terms of AP.

  • a is the first term of the sequence.

  • n is the no. of terms.

  • d is the common difference.

Thus, According to statement

\rm :\longmapsto\:S_7 = 119

\rm :\longmapsto\:\dfrac{7}{2} \bigg(2 \:a\:+\:(7\:-\:1)\:d \bigg) = 119

\rm :\longmapsto\:\dfrac{1}{2} \bigg(2 \:a\:+\:(6)\:d \bigg) =17

\rm \implies\:\boxed{ \tt{ \: 2a + 6d = 34 \: }} -  -  -  - (1)

Also, Given that,

\rm :\longmapsto\:S_{20} = 860

\rm :\longmapsto\:\dfrac{20}{2} \bigg(2 \:a\:+\:(20\:-\:1)\:d \bigg) = 860

\rm :\longmapsto\:2 \:a\:+ \: 19\:d= 86

\rm \implies\:\boxed{ \tt{ \: 2a + 19d = 86 \: }} -  -  -  - (2)

On Subtracting equation (1) from equation (2), we get

\rm :\longmapsto\:13d = 52

\rm \implies\:\boxed{ \tt{ \: d \:  =  \: 4 \: }}

On Substituting d = 4, in equation (1), we get

\rm :\longmapsto\:2a + 6 \times 4 = 34

\rm :\longmapsto\:2a + 24= 34

\rm :\longmapsto\:2a = 34 - 24

\rm :\longmapsto\:2a = 10

\rm \implies\:\boxed{ \tt{ \: a \:  =  \: 5 \: }}

Now,

Wᴇ ᴋɴᴏᴡ ᴛʜᴀᴛ,

Wᴇ ᴋɴᴏᴡ ᴛʜᴀᴛ, ↝ nᵗʰ term of an arithmetic sequence is,

\begin{gathered}\red\bigstar\:\:{\underline{\orange{\boxed{\bf{\green{a_n\:=\:a\:+\:(n\:-\:1)\:d}}}}}} \\ \end{gathered}

Wʜᴇʀᴇ,

  • aₙ is the nᵗʰ term.

  • a is the first term of the sequence.

  • n is the no. of terms.

  • d is the common difference.

Tʜᴜs,

\rm :\longmapsto\:a_4 = a + (4 - 1)d

\rm :\longmapsto\:a_4 = a + 3d

\rm :\longmapsto\:a_4 = 5 + 3(4)

\rm :\longmapsto\:a_4 = 5 + 12

 \red{\rm \implies\:\boxed{ \tt{ \: a_4 \:  =  \: 17 \: }}}

Similar questions