Math, asked by jyothi01021990, 10 months ago

the sum of first 8 therms of an ap is 100 and sum of first 19 terms is 551 find ap

Answers

Answered by Anonymous
0

\huge\purple{\underline{\underline{\pink{Ans}\red{wer:-}}}}

\sf{The \ required \ A.P. \ is \ .\frac{-184}{11},\frac{-128}{11},\frac{-72}{11},…}

\sf\orange{Given:}

\sf{\implies{S8=100}}

\sf{\implies{S19=551}}

\sf\pink{To \ find:}

\sf{The \ A.P.}

\sf\green{\underline{\underline{Solution:}}}

\sf{Sn=\frac{n}{2}[2a+(n-1)d]}

\sf{... formula}

\sf{According \ to \ first \ condition}

\sf{100=\frac{100}{2}[2a+7d]}

\sf{2a+7d=100\times \ \frac{2}{100}}

\sf{2a+7d=2...(1)}

\sf{According \ to \ second \ condition}

\sf{551=\frac{19}{2}[2a+18d]}

\sf{2a+18d=551\times \frac{2}{19}}

\sf{2a+18d=58...(2)}

\sf{Subtract \ eq(1) \ from \ eq(2)}

\sf{2a+18d=58}

\sf{-}

\sf{2a+7d=2}

_________________

\sf{11d=56}

\sf{\implies{d=\frac{56}{11}}}

\sf{Substitute \ d=\frac{56}{11} \ in \ eq(1)}

\sf{2a+7(\frac{56}{11})=2}

\sf{2a+\frac{392}{11}=2}

\sf{Dividing \ the \ equation \ by \ 2 \ throughout}

\sf{a+\frac{196}{11}=1}

\sf{a=1-\frac{196}{11}}

\sf{a=\frac{11-195}{11}}

\sf{\implies{a=\frac{-184}{11}}}

\sf{t1=\frac{-184}{11}}

\sf{t2=t1+d=\frac{-184}{11}+\frac{56}{11}=\frac{-128}{11}}

\sf{t3=t2+d=\frac{-128}{11}+\frac{56}{11}=\frac{-72}{11}}

\sf{The \ A.P. \ is \ t1,t2,t3,...}

\sf{i.e.\frac{-184}{11},\frac{-128}{11},\frac{-72}{11},…}

\sf\purple{\tt{\therefore{The \ required \ A.P. \ is \ .\frac{-184}{11},\frac{-128}{11},\frac{-72}{11},…}}}

Similar questions